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Abstract—Conventional wireless communication is built upon
hardware-based signal processing. This enables high perfor-
mance, but is inflexible as the signal-processing algorithms are
“baked in” to the hardware. Software-defined radio (SDR) is an
emerging solution in which more of the signal-processing logic
is implemented in software instead of hardware. This allows for
adaptability to spectrum conditions (e.g., jamming or congestion),
changes to protocols, and software updates that improve signal-
processing logic — features that are beneficial in many consumer
and military applications. However, the high sampling rate (kHz
to MHz or faster) of many SDR applications poses significant
challenges for real-time scheduling of such workloads. To manage
high sampling rates on general-purpose processors, which process
samples sequentially instead of in parallel, as can be done using
hardware acceleration, samples must be buffered, or “batched”
together, to minimize overheads and maximize locality. To address
this characteristic of high-frequency signal processing, this paper
presents an extension of traditional real-time scheduling models
called the marginal cost model, which reflects the fact that
when batching many samples, the marginal cost of processing
additional samples is often much less than the cost of processing
the first sample. Empirical evaluations are presented from the
open source GNU Radio SDR framework to validate the marginal
cost model. Experiments are then presented that demonstrate the
trade-offs between batching and worst-case latency for synthetic
SDR workloads. Finally, a case study is presented to demonstrate
the utility of the presented model and batching techniques in
real-world signal-processing applications.

Index Terms—Real-time, scheduling, SDR, signal-processing

I. INTRODUCTION

Software-defined Radio (SDR) is an increasingly important
technology in which radio signals are processed in software
instead of dedicated harware. SDR therefore offers flexible,
adaptable, and upgradeable wireless communication. By up-
dating software or running different algorithms, better perfor-
mance can be realized, protocols can be updated, and commu-
nication can be shifted to different parts of the spectrum. This
flexibility is beneficial in many application domains, including
cyber-physical systems, IoT devices, cellular networks, and
satellite communications. SDR is especially important in many
military applications as its enables dynamic, secure, and
resilient communication even in the presence of spectrum-
contested or jammed environments [1].

This work was supported by DARPA’s Processor Reconfiguration
for Wideband Spectrum Sensing (PROWESS) program under contract
HRO00112490302. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of DARPA.

Often in signal processing (hardware- and software-based),
applications are modeled using flowgraphs. These flowgraphs
are composed of blocks, that is, computational units that
implement various signal-processing algorithms. Data samples
pass through these blocks in order to transform an input signal
to output. In traditional signal processing, flowgraphs are im-
plemented directly on high-performance, application-specific
hardware. Thus, flowgraphs can be executed efficiently and in
parallel, but they cannot be updated. In software-based signal
processing, however, blocks of computation are executed on
the CPU. As a result, flowgraphs can be easily updated, but
they suffer from (i) less parallelism and (ii) contention for
scheduling time with other tasks. Thus, SDR applications
can suffer from significant jitter and end-to-end latency when
implemented on general-purpose processors, hampering SDR’s
ability to be used in many real-time applications [2].

The cause of this latency and jitter can ultimately be traced
back to fundamental challenges that arise when scheduling
computations with high sampling rates. While there has been
considerable work on real-time flowgraph scheduling (see [3]
for a recent summary), many of these papers implicitly target
applications with much slower frequencies (e.g., video frame
rates of 30-120Hz), as is common in control processing in
embedded and cyber-physical systems, rather than the high
frequencies seen in signal processing (e.g., audio sampled at
44kHz, or Wi-Fi at 2.4GHz). To keep the latency of these high-
frequency applications low, samples must be sent through the
flowgraph at a high rate and with relatively small execution
times, raising challenges in how to manage overheads.

To illustrate these challenges and highlight how existing
SDR implementations address them, we focus on the popular
open-source project GNU Radio [4]. In GNU Radio, flow-
graphs are composed of blocks. Each block implements some
elementary signal-processing function (e.g., filter, multiply,
etc.) and is assigned its own thread by the GNU Radio runtime
environment. These blocks are connected by buffers, or FIFO
data queues that move data between consecutive computations.
To reduce overheads, GNU Radio generally does not wake
up a thread, i.e., make it ready, until its input buffer(s) is at
least half full. Upon execution, the block then processes all
inputs in its input buffer(s). This approach reduces the total
number of block invocations (and thus, context switches) that
are required to process a workload. It also promotes cache
affinity (both instruction and data), which significantly reduces
overhead and observed utilization. However, this approach is
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Fig. 1: Execution Cost vs. Samples Processed for GNU Radio Blocks

unpredictable, as scheduling decisions are left to the general-
purpose scheduler of the underlying operating system. More-
over, blocks can process different numbers of samples, or
batch sizes, in different invocations. This leads to variable
execution times for individual blocks, and significant jitter in
the overall application [2].

To better understand this relationship between batch size
and execution times, we executed several GNU Radio signal-
processing blocks on a quad-core Raspberry Pi 5 and con-
trolled for the number of samples processed in a given
invocation using GNU Radio’s “Head” blocks. We used the
Linux FIFO scheduler to ensure non-preemptive execution and
CPU affinity masks to isolate the workload to dedicated cores.
We then measured the execution times using GNU Radio
Performance Counters [5]. Graphs showing the execution time
of four GNU Radio blocks as a function of the number of
samples processed are shown in Fig. 1. We observe in Fig. 1b
that the cost to execute the first sample is approximately
8,800 clock cycles, while the marginal cost of executing each
additional sample is only approximately 2 clock cycles. As
seen in Fig. 1, the same trend holds across all the block types
that we profiled. This clearly shows why GNU Radio blocks
opportunistically process as many samples as possible in a
single invocation to save on total execution time.

Real-Time SDR. These results demonstrate that batch-
ing is fundamental to supporting high-frequency signal-
processing applications. However, to our knowledge, no real-
time scheduling models or analyses have considered batching
block invocations, or jobs, in this way. In fact, there has been
significant work on approaches to splitting jobs [6]-[8] to
reduce tardiness bounds, or breaking jobs up into smaller non-
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preemptive sections, as in limited-preemptive scheduling [9].
To enable real-time SDR, we argue that signal-processing
workloads must be batched more carefully to manage over-
heads and reduce utilization while still supporting real-time
predictability and performance.

In support of this goal, we introduce batching in real-time
SDR using the Processing Graph Method (PGM) scheduling
framework originally developed by the U.S. Navy, which
models signal-processing applications as directed, acyclic pro-
cessing graphs [10]. PGM is an intuitive model for GNU
Radio-like SDR applications, as the blocks in a GNU Radio
flowgraph have a natural mapping to nodes in a processing
graph. Similarly, the buffers that connect these blocks can be
mapped to processing graph edges. Importantly, prior work has
developed optimal schedulers and analyses for both uniproces-
sor [11] and multiprocessor [12] soft real-time scheduling of
PGM graphs, albeit without consideration for the effects of
batching. Like this prior work, our focus is on soft real-time
(SRT) scheduling of processing graphs. This is because many
signal-processing applications do not have specific signal-
processing deadlines, per se. Rather, our soft real-time analysis
informs the maximum frequency and throughput a platform
can support subject to certain latency or utilization constraints.
Marginal Cost Model. PGM allows us to model the struc-
ture and data relationships in signal-processing applications.
However, it is insufficient for understanding how batching
affects factors such as latency and utilization, as it assumes
that node execution times are fixed (and externally provided).
Therefore, to formalize the effects of batching, we present
a new scheduling model called the marginal cost model.
In this model, we batch consecutive jobs of a task into a
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single job by increasing the number of samples that the
task consumes per invocation. This causes the batched job
to execute less frequently but process more data in a single
invocation. By reducing context-switches and promoting cache
affinity, these batched jobs require less execution time than
the sum of their individual un-batched parts, consistent with
our empirical observations (e.g., Fig. 1). Furthermore, batching
reduces the amount of synchronization necessary to manage
all the dependencies between blocks in the flowgraph. Given
this model, we present methods to batch workloads efficiently
subject to application and platform requirements.
Contributions:

o We evaluate the marginal cost of batched sample process-
ing in GNU Radio (Figs. 1b and 1).

o We present the first end-to-end latency analysis for mul-
ticore PGM graphs scheduled under a global earliest-
deadline-first-like (G-EDF-like) scheduler. (§ III)

« We develop the marginal cost model (§ IV) and present
two batching techniques to capitalize upon batching an-
alytically. (§ V)

o We present evaluations of randomly generated synthetic
task systems to demonstrate the utilization and latency
trade-off enabled by batching. (§ VI)

e We extend GNU Radio to support the Linux
SCHED_DEADLINE and SCHED_FIFO scheduling
policies, and present a case study applying batching
techniques to a real signal-processing application. (§ VII)

II. PRELIMINARIES

Often in real-time systems (and many other high-
performance computing environments) complex data-
processing applications are modeled as directed acyclic
graphs (DAGs), where vertices represent distinct code
segments, or tasks, and edges represent the precedence
constraints between those tasks. By modeling an application
as a task graph, rather than a single sequential program,
implementations can exploit parallelism. For example, the
widely studied Synchronous Data Flow (SDF) model for
digital signal-processing, originally proposed by Lee and
Messerschmitt [13], enables both task-level parallelism
(parallel execution of the tasks in a graph) and DAG-level
parallelism (parallel execution of multiple invocations of that
graph). The Processing Graph Method (PGM), which we
adopt is an extension of the SDF model, with the additional
feature that PGM graphs can specify thresholds for each
queue (see § II). Importantly, the streaming-based approach
used in both SDF and PGM allows for successive invocations
of a flowgraph to execute concurrently, unlike many real-time
DAG scheduling models [14]-[18].

In the remainder of this section, we formally define the
PGM framework, which was originally developed for signal-
processing applications [10], and review important scheduling
results that pertain to it. Of particular relevance to this paper
are the results of Liu and Anderson [12], who ensured bounded
tardiness for PGM graphs scheduled by a global earliest-
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deadline-first-like (G-EDF-like)' scheduler with no utilization
loss. Since deadlines are at a constant offset from the release
point, bounding deadline tardiness also implies bounded la-
tency. This is an especially apt correctness condition for signal
processing, as in many cases there are not strict deadlines
per se; rather, practitioners are more concerned with the
maximum frequency or bandwidth that can be supported given
the available resources. Our work on batching also assumes
that deadlines are not hard (otherwise batching would inher-
ently violate deadline constraints). Rather, we seek to achieve
bounded (and ideally, low) latency given utilization constraints
or throughput requirements. Therefore, in the remainder of
this paper, we consider soft real-time scheduling with the
requirement that tardiness (and hence latency) is bounded.

In order to show that a PGM graph scheduled under a

G-EDF-like scheduler has bounded deadline tardiness, Liu and
Anderson [12] performed a series of transformations from
the PGM graph to a set of sporadic tasks. In turn, seminal
results [6], [19], [20] on tardiness bounds for sporadic-tasks
scheduled under G-EDF or G-EDF-like schedulers can be
immediately applied. Here, we review the transformation of
Liu and Anderson [12], which is necessary for proving certain
batching properties in § V. Finally, we define metrics that are
descriptive of application performance, namely utilization and
latency, and describe how they can be inferred from certain
properties of the sporadic task system.
Processing graph method. A PGM graph, G, consists of a
set of nodes connected by directed edges. Each node repre-
sents a distinct signal-processing algorithm, or task, and each
edge represents a first-in, first-out queue that propagates data
between successive tasks. Because PGM graphs are acyclic,
every PGM graph has at least one source node — that is, a
node with no incoming edges — and at least one sink node, a
node with no outgoing edges. Futhermore, each edge in a PGM
graph is specified by three parameters: a produce amount, a
threshold, and a consume amount. Suppose there is a directed
edge from some node, u, to another node, w. The produce
amount for this edge specifies the number of data tokens that
are output to the queue each time u executes. We use the
notation p,,_,,, to denote the produce amount of the edge from
u to w. The threshold for this same edge specifies the number
of data tokens that must be present in the queue before the
successor, w, can execute. Upon execution, w will consume
Cu—q data tokens from the queue, where c,_,,, denotes the
consume amount for the edge between u and w. Note that the
produce and consume amounts for a particular edge need not
be equal. The same is true of the consume amount and the
threshold, however if the threshold label is omitted from an
edge, we assume they are equal. Fig. 2 shows an example of
a PGM graph.

'A G-EDF-like scheduler is one with job-level fixed priority where the
priority point is some constant offset from the release point. Global EDF is an
example — the priority of a job is defined by the constant offset of the relative
deadline from the release point. FIFO is another example in which the priority
point is defined to be the release point. For simplicity in the remainder of this
paper we refer to the priority point as the deadline.
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G

Rate: (1, 5)

Fig. 2: An example PGM graph, GG. The source node (node 1) is
specified by Rate = (z,y) and each edge is specified by a produce
and consume amount.

Rate-based task model. In order to convert a PGM graph,
G, into a set of schedulable tasks, the analyses presented
in [11] and [12] derive execution rates for each node in G.
The execution rate (x,y) indicates that a task will execute x
times in any time interval of length y. Each invocation of a
task is called a job. This execution rate, along with the task’s
execution cost, i.e. the amount of processor time that the task
requires to execute fully, are used to specify that task in a
framework called the Rate-Based (RB) Task Model. We use
7 to denote an individual task, and Trp to denote a set of
RB tasks generated from a PGM graph, G. Then, as proven
in [11], the RB-parameters of each non-source task, 7 € Trp,
can be calculated recursively using Lem. 1.

Lemma 1. [11] For any non-source task T, in Trp, let V
denote the set of predecessor tasks of T,,. For any 7, in V, let
Rate, = (z,,y,) be a valid execution rate. Then, the execution
rate Rate,, = (., y,) is valid for 7, if

Co—u * Yo

Yy = lcm{
9Cd(Py—u - Ty Comu

;L'u:ym]ﬂ'm—”, JveV.
Cv—)u y’U
Similarly to [12], we calculate a relative deadline for each
RB task using d, = y,/z,, and we require that d,, < d,
if there exists an edge from node u to v in G, i.e., that the
execution rate does not increase through any path in a PGM
graph (as is often the case in signal-processing applications).
Furthermore, we assume there is a single source node, whose
execution rate is periodic, i.e., z = 1, and that this rate can be
inferred from the application sampling rate. Lastly, we assume
that the worst-case execution cost, e, for each task is provided
(in our case, from our GNU Radio block profiling). From here
on, we use the notation 7, = (Zy, Yu, dy, €,) to specify the
RB-parameters of some task 7, € Trp.
Sporadic task model. Finally, the RB task set can be trans-
formed into a sporadic task set, for which tardiness bounds can
be determined analytically. In the 3-parameter sporadic task
model, each task is specified by a period, relative deadline,
and execution cost, (p, d, ). These parameters are determined
in [12] by setting the period, p, of the task equal to y/x,
where y and x are the task’s RB-parameters, and by assuming
implicit deadlines, i.e., that the relative deadline, d, is equal

)|vvev} (1)

(@)
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Fig. 3: The RB-parameters, RB(x,y, d, ), for each task in G.

to the period. Thus, for each task 7, in a sporadic task set T’s,
Ty = (p'm d’u: ev) - (yv/mvv yv/xm e’u)-
Utilization. After transforming an arbitrary PGM graph, G,
into a sporadic task set, T's, we can calculate the utilization,
Uy, Of each task, 7,, via u, = e,/p,. The utilization of a
task describes the fraction of total processor time that must
be allocated to that task. By summing the utilizations of each
task in a soft real-time system, we can determine whether the
task set is schedulable on M processors. In fact, as long as
the sum of the utilizations, denoted U, does not exceed M,
the task set is guaranteed to be SRT schedulable under any
G-EDF-like scheduling policy [19].
Latency. An equivalent schedulability condition to U < M
checks whether we can bound the tardiness of each task in
the task set, where tardiness is defined as the amount of time
between a task’s deadline and its actual completion time. In the
context of signal-processing, bounded tardiness indicates that
the latency of an application does not increase to indefinitely,
i.e. get progressively worse throughout the program duration.
In this paper, we define the end-to-end latency of a data
sample as the total time between the production of that sample
by a source node and its consumption by a sink node. There are
two different types of latency that contribute to the total end-
to-end latency that a sample will experience, namely inherent
latency and imposed latency. Inherent latency results from
the structure and rate relationships within the PGM graph,
while imposed latency results from the specific policy used to
schedule the graph. Similarly to [11], we calculate the end-
to-end latency, L, that a sample experiences through a PGM
graph by summing these two types of latency.

L = InherentLatency + ImposedLatency 3)

Because inherent latency is “inherent” to the structure of
the PGM graph and is independent of the scheduling policy
or platform, the formal equation for inherent latency derived
in [11] holds. We present this equation in Lem. 2, but first,
we define a variable that is needed for its calculation. Suppose
we have a PGM graph G. Let j and w be a source node and a
sink node in G, respectively. Let j ~» w represent some path
from j to w. Then the variable F}.,,, denotes the number of
executions of j that are necessary before w has sufficient data
to execute for the first time [11].
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Lemma 2. [11] Let G be a PGM graph with source node j.
Let {j ~~ w} be the set of paths from j to a sink node w. The
inherent latency a sample incurs from j to w is

InherentLatency = (maz({F, | ¢ € j ~> w})—1)-p; (4)

where, mazx({Fy | ¢ € j ~» w}) is the maximum value of F
over all possible paths from j tow in G, and p; is the period of
the source node.

Note that the equations used to calculate F' for a single path,
which can be found in Lemma 4.2.1 of [11], are omitted here
due to space constraints. The path that maximizes F, is found
by enumerating all paths from j to w in G.

Unlike [11], this paper is concerned with non-preemptive
(NP) G-EDF-like scheduling in the multiprocessor case. Thus,
while we can reuse the above equation for inherent latency,
we must derive our own equation for the imposed latency of
PGM applications under NP G-EDF. To do this, we must first
consider that in soft real-time systems with bounded tardiness,
tasks may complete later than their deadline. Thus, we must
include the potential tardiness of tasks in the upper bound on
imposed latency. Note that the time between the release of a
soft real-time task and its completion is called its response
time. Thus, the worst-case response time (WCRT) of a job
is equal to its relative deadline plus the upper bound on its
tardiness, i.e., 1 = d+b, where r is the response time, d is the
task’s relative deadline, and b is the tardiness bound. We note
that there exist tardiness bounds for G-EDF-like schedulers,
both preemptive and non-preemptive [19]. As an example, we
review the NP G-EDF tardiness bound:

Lemma 3. [19] Let Ts be a sporadic task set, U be the sum of
the utilization of each task in T's, and

.

Then, on M processors, G-NP-EDF ensures a tardiness bound
of

U —
Ll

1, ifU is integral

(&)

otherwise

A+1
ZL:Jrl €; — €min
A
M =370
for every task T, of a sporadic task system T's in whichU < M,

where Z?jll €; represents the sum of the A+1 largest execution
costs of tasks in T's and Z?Zl 1 the A largest utilizations.

The transformation from PGM to a sporadic task sys-
tem [12] defines sporadic release times such that they satisfy
the precedence constraints of the PGM graph. Thus, traditional
bounds for pure sporadic tasks can be applied directly. Liu
and Anderson [12] also show that jobs can further be “early
released” when their predecessor jobs complete but before the
minimum job separation in the sporadic task model without
negatively affecting the tardiness bounds. In the following
section we use the tardiness bounds of Lem. 3 to derive a
bound on imposed latency, and thus total latency.
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Fig. 4: Single path PGM graph, G.
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III. END-TO-END LATENCY

While previous work has shown that G-EDF-like schedulers
are able to soft-real-time-optimally schedule a PGM graph
on a multiprocessor system [12], to our knowledge there
are no known bounds for the end-to-end latency that may
occur in such systems. Here, we aim to derive such an end-
to-end latency bound, but first, we present an example that
demonstrates the two types of latency that contribute to it.

As shown in Lem. 2, inherent latency describes the number
of source-node invocations that are necessary before there is
sufficient data in the system to contribute to an output by a
sink node. Take the simple PGM graph in Fig. 4, for example.
Task 71 must execute 8 times before 74 has sufficient data to
execute, due to the 2:1 consume-to-produce relationships in
G. If the task set generated from G is deemed schedulable,
then source node is guaranteed to execute with Rate = (1,
3), that is, once every 3 time units. Thus, it takes exactly
(Fg—1)-p; = (8—1)-3 =21 time units for sufficient data
to enter the system.

Fig. 5 shows the release times (denoted by up arrows) and
completion times (denoted by down arrows) for jobs of the
corresponding sporadic task set generated from G. Each task’s
release and completion times are shown on their own timeline
for clarity. The 21 time units that can be attributed to inherent
latency are labeled at the bottom left side of the timeline. Note
that in Fig. 5, we show only the releases of jobs that contribute
to the first output of data by 74. The dotted lines show how
data moves through G via these task executions.

Once sufficient data has entered the system, each task along
the path must execute exactly one more time before the first
output by 74. This is because we guarantee that the execution
rate does not increase through any path of G. In the worst case,
the time it takes for these jobs (shaded darker blue in Fig. 5)
to finish is equal to the sum of their worst-case response times
(because jobs cannot be released until the completion of their
predecessors). This additional latency represents the imposed
latency under G-EDF. Therefore, the total latency for the first
sample output by G is upper-bounded by 21471 479 +1r3+74.
We formalize this worst-case bound on the imposed latency
in Lem. 4.

Lemma 4. Let G be a PGM graph with source node j and sink
node w. Let (Q be the set of paths from j to w that maximize
F)j.,. If the sporadic task set, T's, generated from G is SRT
schedulable with bounded deadline tardiness on M processors,
then the imposed latency a sample incurs from j to w is upper
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Fig. 5: Worst-case release/completion times for jobs of the sporadic
task set generated from G (of Fig. 4) that contribute to the first output.

bounded by

ImposedLatency < max({ Zn |q e Q}) @)
i€q

i.e., the largest sum of the worst-case response times of the tasks
T; along any path q € Q.

Proof. Recall that the source node j executes periodically,
according to some rate (1,y). Therefore, the last execution
of 7; before 7,, will have enough data to execute for the first
time is guaranteed to be released at time (F; —1)-p;. Because
this is the final execution of 7; before there is enough data in
G for 7, to execute, the data must pass through each node
in ¢ at least one more time before it can be output by w.
However, the data will not pass through any node more than
once, as we require that the execution rate of nodes does not
increase through a path in G. In the worst case, each task
invocation along this path takes the maximum amount of time
to complete, ie., the job completes at its release time plus
its worst-case response time. Thus, successor jobs cannot be
released until the release of their predecessor along ¢ plus
the predecessors WCRT time. Therefore, the maximum time
it can take for a data sample to get from j to w along g is
the sum of the worst-case response times of the tasks along
path g. Because there can be multiple paths from j to w that
maximize F', we take the maximum sum of these WCRT's over
all paths in @. Thus, the upper bound on imposed latency is
max({zieqri lqeQ}). O

Now that we have bounds on both inherent latency and
imposed latency, we can determine a bound on the total latency
of samples processed by a sporadic task set generated from a
PGM graph and scheduled under NP G-EDF.

Theorem 1. Let G be a PGM graph with source node j and
sink node w. If the sporadic task set, T's, generated from G
is SRT schedulable with bounded deadline tardiness on M
processors, then the total latency, L, that a sample incurs from
j tow is upper bounded by

L < (max({F, | g €j~w})—1) p;
+max({2ri |q€Q}). ®)

i€q

Proof. The proof of Thm. 1 follows from Lem. 2, Lem. 4, and
the definition of total latency. O

Latency vs. utilization. Notice that the inherent latency of a
PGM graph grows as the period of the source task increases
(as does the imposed latency, less obviously). Therefore, if
we increase the period of the source task, i.e., send larger
batches of data through the graph at increased intervals, the
latency of the corresponding application grows. However,
larger batch sizes provide the benefit of minimizing context-
switch overhead and promoting data locality, factors that, gen-
erally speaking, reduce utilization. Often times, on the tightly
constrained processing resources of many real-time systems,
high utilization from any one application is undesirable. Thus,
a practical question becomes, how do we select batch sizes
to minimize utilization subject to a particular application’s
latency constraints? We address this in the following sections.

IV. THE MARGINAL COST MODEL

As shown in Fig. 1, there is a fixed cost associated with
starting the execution of a block, but the marginal cost of
executing successive samples is significantly smaller. It is this
observation that motivates the marginal cost model presented
in this section. Note that this orders-of-magnitude difference
between costs is due to the overhead of loading caches
with instructions/data after a context switch, as well as the
synchronization that is needed to signal that a block is ready
to execute. We use the marginal cost model to account for
these overheads (which can be relatively large considering the
high-frequency of signal processing) in a task’s execution time.

Suppose we have a sporadic task 7, = (py, dy, e,). We use
I, to represent the time spent loading program instructions
and/or data onto the CPU, including time spent rebuilding
cache affinity, when 7, begins execution. We call this I, the
initialization cost of T,. We then use A, to represent the time
required for 7, to process one sample, that is, the marginal
cost per sample. Finally, let ¢, denote the number of samples
consumed by a single invocation of 7.

Def. 1. Under the marginal cost model, the execution cost, e,
of 7, 18
ev:Iv+Av'cv~ (9)

where [, the initialization cost, A, is the marginal cost, and
¢y 1s the number of samples consumed by 7,.

As seen in Figs. 1b and 1, the relationship between samples
processed and total execution time is approximately linear.
Thus, we let the y-intercept of the linear-regression model
represent I and the slope represent the marginal cost to process
an additional sample, A. The observation that I is orders of
magnitude larger than A motivates the batching techniques in
the following section.

V. BATCHING TECHNIQUES

In this section, we define two batching techniques called
Uniform and Rate-Exploiting Batching and discuss their effects
on utilization and latency. Before introducing these techniques
we first define how to batch an individual task in a way that
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preserves the task’s consume-to-produce ratio, i.e., preserves
the logic of the block’s computation.

Suppose we want some task, 7, to process [V times as many
data tokens in a single invocation. Note that from here on we
use N to denote the factor by which we are batching. In a
PGM graph, this batching can be enforced by multiplying the
consume amount of all incoming edges to u, and the produce
amount of all outgoing edges from wu, by the factor N. Def. 2
formalizes this single-node batching procedure. Note that by
batching u, we effectively delay the invocation of u until N
times as much input data has accumulated in «’s input queues.

Def. 2. Let G be a PGM graph and let u be an arbitrary node
of G. To batch node u by some positive integer N, we set

Cf%u =N-cysu, YEV (10)
where V' denotes the set of predecessors to u, and
pf—nu =N * Pu—w; Yw e W (]])

where W denotes the set of successors of .

Note that the superscript B is used to distinguish the
value of parameters post-batching from their non-batched
counterparts.

A. Uniform Batching

Consider the scenario wherein a designer wishes to im-
plement some SDR application on a multi-core system, but
has insufficient cores or utilization for the computational
workload. The designer has no choice but to lessen the
computational workload at the expense of latency (assuming
sufficient memory for the buffers between nodes). Towards
this end, we present Uniform Batching.

Suppose we have a PGM graph, G. To batch GG uniformly,
we batch each node of G by the same factor N. To make
claims about the schedulability of the PGM graph, GZ, that
results from Uniform Batching, we must first transform it into
a sporadic task set using the series of steps described in § II.
Recall that the first step is to transform G to an RB task set,
TI?B' In Lem. 5, we define the RB-parameters of each batched
task 7.2 € TgB in terms of the RB-parameters of the original
non-batched task, 7, € Trp. Defining each Tf in terms of
T, allows us to directly compare the two task sets and thus
quantify the effects of batching on latency and utilization.

Lemma 5. Let Trp be the set of RB tasks generated from
some PGM graph, GG. Then for each 7, € Tgrp we have
To = (v, Yv,dy, €y). Suppose we batch each node of G by
some positive integer, N, and generate a new RB task set, TEB.
Then the RB-parameters for each 72 € TE, are valid if

B

v

B
v

(':L. yq)Bvdfve ):(zvayvadvvef) (12)

Proof. Because GG is a DAG, it has a topological ordering.
For any two tasks 7, and 7, in Trp we say 7, < 7, if
node v precedes u in the topological sort of G. We show,
by strong induction on the order of a task 7, € Trp, that for
any T2 €T EB, the parameters in Eq. 12 are valid.
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First we rewrite Lem. 1 to describe batched task sets. Recall
that Lem. 1 defines all RB-parameters recursively, i.e., the
RB-parameters of a task, Tf , are determined using the RB-
parameters of tasks in the set of predecessors, V. Therefore,
VB eV, 7B = (2B,yB, dB, eB) is well-defined. We rewrite
Lem. 1 in terms of z2

5 and yP and adjust the consume and
produce amounts as described in Def. 2.

Neyy - yB
B VU v
=1 YvoeV 13
yu cnl{ng(j'p114>u : 1’53, N Cv~>u) } v } ( )
Npy_u zB
B B VU v
= . v 3 V. 14
Ly, Yu ZVCq, vy 5 5 NS ( )

We use Equations (13) and (14) later in the proof.

Base case: 7, has order 1, ie., it is the source task. Since
Ty 1s the source task, there are no tasks that precede it in
the topological sort. Therefore, it has no input edges and is
specified in both the PGM model and the RB-task model by
a rate, (x,,y, ). Recall that the rate (z,,v,) implies that the
task executes x,, times over the interval y,,. By Def. 2, if we
batch 7, by N, we must recalculate the produce amounts of
each of its output queues by letting p2 ., = Np, ..,, Yw €
W, where W is the set of successors to u. Assuming the
application’s sampling frequency remains fixed, a source task
must wait for additional data to accumulate if it is to produce
additional data. That is, to produce N times as much data in
each of the z, invocations of a task, the interval in which
those z, jobs execute must be lengthened to Ny,. We let
y2 = Ny, and calculate d® = yZ /28 = Ny, /x,. Thus,
if 7, is a source task, Tf = (24, Nyu, Ndu,ef) and Eq. 12
holds.

Inductive Step: Assume that Eq. 12 holds for all RB tasks
with order between 2 and k. We will show that for any task
with order equal to k + 1, Eq. 12 also holds.

Let 7, be a task with order equal to k+1. Because k+1 > 2,
T, 1S a non-source task, and thus it has a nonempty set, V/,
of predecessors. By definition of a topological sort, each of
these predecessors have order smaller than k4 1. Thus, by the
inductive hypothesis, together with the proof of the base case,
(2B yB dB eB) = (z,, Ny,, Nd,,eB) for all v € V. We
substitute x,, for mf and Ny, for yf in Eq. (13) and Eq. (14)
and obtain updated RB parameters:

Ne - Ny
B v=Uu v
=1 YoeV 15
Yu Cm{ ng(va—)u * Loy, Ncuau) ! v } (15)
Np. T
B v—u v
= Ny, - . , 3 V, 16
T, Yo Newow Ny 0V € (16)
which can be reduced to
yB=N. lcm{ Coou P | Vv e V} an
ng(pv—m, * Ty, Cv%u)
@B =y, e T g, (18)
c?/‘)?l, y?)

Note that we have isolated the original definitions for v, and
T, as they appear in Lem. 1 and thus can reduce Eq. (17) and
Eq. (18) to

yl = Ny, (19)
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(20)

Thus, Eq. 12 holds for all 78 € TE;. O

To quantify the effect of Uniform Batching on utilization,
we apply the marginal cost model. Note that we have not yet
defined eB, that is, the execution cost of a task that has been
batched by some factor, N. By Eq. 9, we can calculate e,, and
eZ for some arbitrary task 7, using

T, = Xy

e =1I,+A, ¢y 21
eB=1,+A, Nec,. (22)

Rewriting eZ in terms of e, we get
eB—c,+A,-(N—-1)c, (23)

Thm. 2 combines Lem. 5 and Eq. 23 to formally observe the
effect of Uniform Batching on RB task sets.

Theorem 2. Let Trp be the set of RB tasks generated from
some PGM graph, G. Then for each 7, € Trp we have
7i = (x4, yi, d;, ;). Suppose we batch each node of G by some
positive integer, N, and generate a new RB task set, TgB. Then
the RB-parameters for each 7P € TE, become

B

B B _B
('xi y Yi ad' €

P.el) = (i, Nyi, Ndi, e + Ai(N — 1)¢;). (24)

where A; is the marginal cost of T;, and c¢; is the number of
samples initially consumed by an invocation of T;.

Now that we have specified the RB parameters of task
sets under Uniform Batching, we can quantify the effects on
latency and utilization.

Theorem 3. Let G be a PGM graph consisting of n nodes
and let Ts be a sporadic task set generated from G. Suppose
we batch each node of G by some positive integer, N. Then
the total utilization of the resulting task set with regard to the
original parameters ; = (p;,d;, e;), V1; € Ts is

n

Uh=>%"

=1

Np; *

where A; is the marginal of 7;, and ¢; is the number of samples
originally consumed by an invocation of 7;.

Proof. By Thm. 2, when we batch G by N and gen-
erate the corresponding RB task set, we obtain 77
(w5, Ny;, Nd;, e; + A; (N — 1)¢;) for each 7.2 in TEB. There-
fore, when we transform TgB into a sporadic task set, we
get 78 = (Npi, Nd;,e; + A;(N — 1)¢;) for all 72 in TZ.
Thus, by the definition of total utilization of a sporadic task
set, Eq. 25 holds. O

Recall that e; = I; + A; - ¢;. Thus, if I; > 0,V7; € Ts, then
A;c; < e;,V1; € Ts. Cor. 1 follows.

Corollary 1. If I; > O for any 7; € Ts, then Ug < U. That
is, total utilization decreases as a result of Uniform Batching.

Thm. 3 provides us with a nice theoretical framework,
however without concrete values for I or A, we cannot
quantify the true reduction in utilization. In general, the larger
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the value of I is compared to A, the more reduction we expect
to see in utilization under Uniform Batching. However, I and
A are highly system dependent, and need to be bounded for
analysis. Therefore, in § VI we use the values of I and A
derived in our GNU Radio batch profiling experiments to
evaluate the reduction in utilization for synthetic workloads
under Uniform Batching, but first, we analyze the effect of
Uniform Batching on latency.

Theorem 4. Let G be a PGM graph with source node j and
sink node w. Let Ts be a sporadic task set generated from G
that is SRT schedulable on M processors under NP G-EDFE.
Suppose we batch each node of G by some positive integer, N.
Then the total latency a sample incurs from j to w, with regard
to the original parameters 7; = (p;, d;, e;), V7; € T, is upper
bounded by

LP < (max({F, | g € j ~ w}) — 1) - Np,
+ max ({ Z(Ndi +07) | qe Q}).

i€q

(26)

Proof. Under Uniform Batching, the produce and consume
relationships between tasks scale uniformly. Thus Fj, is unaf-
fected by Uniform Batching. As shown in the proof of Thm. 3,
when we batch G by N and generate the corresponding
sporadic task set, we get 72 = (Np;, Nd;, e; + A;(N — 1)¢;)
for all 72 in Tég. Thus we simply replace p; with Np; and
ri =d; + b; WlthNd7+bF for all ¢ € q. O

Note that we do not expand b2, as the tardiness bound for
sporadic tasks are not simple function of the task’s parameters,
and instead depend on the specifications of the underlying sys-
tem. We therefore empirically evaluate tardiness and latency
in § VI. However, note that if the sum of the tardiness bounds
is small relative to the end-to-end latency bound, then the
latency bound scales approximately linearly with the batch
size N. We leave the evaluation of this observation to be
empirically measured in § VI. Next, we present our second
batching technique.

B. Rate-Exploiting Batching

Rate-Exploiting Batching, as the name suggests, exploits
disparate executions rates that arise in RB task sets to reduce
the utilization of a processing-graph workload. Unlike Uni-
form Batching, however, Rate-Exploiting Batching can achieve
this reduction with minimal impact on latency.

Often in signal-processing applications, certain algorithms
must consume more data than they produce. Take filters, for
example. A node that implements a filtering algorithm may
need to consume 10 data tokens to produce a single output.
See nodes 3 and 4 from Fig. 2, for example. Note, however,
that the predecessor to these nodes (node 2) produces only one
data token each time it executes, and thus will need to execute
10 times before nodes 3 and 4 have sufficient data to execute,
with each invocation incurring its own initialization cost. The
idea behind Rate-Exploiting Batching is as follows. Rather
than invoking this predecessor node 10 individual times, we
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(b) RB task set TgB calculated from G5B.

Fig. 6: The resulting PGM graph and RB-task set after batching 7>
in Fig. 2 by N = 10.

can delay the task invocation until all 10 data tokens can be
processed at once, effectively batching all 10 jobs.

In Alg. 1 we show how to detect these disparate produce
and consume amounts in a PGM graph, G, and generate the
resulting graph, GB. Note that Alg. 1 ensures that a node is
only batched when all of its outgoing edges have the same
ratio, ¢/p, and that ¢/p is an integer larger than one. When
this condition is satisfied, we say the task is eligible to be
batched, and we set the batch size, N, equal to ¢/p. Note
that this definition prohibits sink nodes from being eligible for
Rate-Exploiting Batching. Also note that Alg. 1 detects these
rates in reverse-topological order, allowing Rate-Exploiting
Batching to be applied recursively up each path in G. As seen
in Alg. 1, Rate-Exploiting Batching can be applied to any
number of nodes in a PGM graph depending on its structure
and data relationships. Thus, we leave the evaluation of Rate-
Exploiting Batching to the empirical measurements in § VI

Next, we demonstrate the trade-offs between utilization and
latency that is enforced by batching using randomly generated
synthetic workloads.

VI. EVALUATION

In this section, we evaluate the effects of Uniform and Rate-
Exploiting Batching on the utilization and latency of randomly
generated signal-processing applications sampling at 1 MHz.
Experiment Setup. For each combination of parameter values
in Tbl. Ia we generated 1,000 PGM workloads. Depending on
whether the workload was “Light” or “Heavy” we selected the
number of nodes and the branching degree of those nodes from
distinct distributions (see Tbl. Ib). We set the rate of the source
node to match a 1 MHz sampling rate and randomly generated
produce and consume values such that each node had an equal
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Algorithm 1: Rate-Exploiting Batching

Input: Set V' of nodes in G sorted in
reverse-topological order
Output: GZ
1 foreach v € V do

2 FEo < set of outgoing edges from v;
3 if |[Ep| > 0 then

4 ratios(|Eo|);

5 i+ 0;

6 foreach ¢ € Fp do

7 if c./p. is integer then

8 L ratios[i] < c¢/pe;

9 else

10 L ratios[i] « 1;

11 11+ 1;

12 N < gcd(ratios);

13 if n > 1 then

14 FEr < set of incoming edges to v;
15 foreach ¢ € E; do

16 | ce < Nee;

17 foreach ¢ € Ep do

18 L De < Npe;
19 return GZ;

Batch Size [1, 2,3, ..., 24, 25]
Graph Size [Light, Heavy]

(a) Parameters

Graph Size Light Heavy
Num. Nodes [5,6,....15] | [15, 16, ..., 25]
Branching Degree [1,2, 3] [1,2,3,4]

(b) Distributions for Graph Size Sub-Parameters

Block Type | Probability I (us) A (us)
1:1 0.5 rand(3, 5) 0.001
l:rand(2, 10) 0.5 rand(6, 8) 0.005

(c) Distribution for I and A
TABLE I: Parameter Values for Randomly Generated PGMs

probability to be a one-to-one function (e.g., constant multiply,
frequency shift, etc.) or a decimating function (e.g., filter).
Depending on the function type, we randomly selected A
and 0 from the distributions shown in Tbl. Ic. The values
of A and ¢ are based on the empirical results in § TV. We
then transformed the PGM graphs to sporadic task sets and
calculated the total utilization and end-to-end latency bound
when scheduled under non-preemptive G-EDF.?

2These experiments can be reproduced using the artifact linked from:
https://my.vanderbilt.edu/bryancward/publications/.
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Fig. 7: Utilization and Latency vs. Batch Size

Uniform-Batching Results. In Fig. 7, we show how total
utilization and end-to-end latency change as a function of the
batch size. Each data point represents the average utilization
(blue) or end-to-end latency bound (red) across the 1,000
randomly generated applications for the given batch size.
Notice in Fig. 7b that a batch size of N = 4 causes the average
utilization to drop from almost 6 to almost 2. Thus, batching
by N 4 allows applications that were previously only
guaranteed to be SRT schedulable on six processors, to achieve
the same guarantee on only two processors. Notice also that
this sharp decrease in the necessary processing resources was
achieved without a significant impact on end-to-end latency. In
fact, the upper bound on end-to-end latency increased by only
0.06 ms. As the batch size increases, however, the reduction
in total utilization shows diminishing returns. However, the
upper bound on end-to-end latency continues to increase
approximately linearly. From this we make the following
observation.

Obs. 1. As batch size increases, the reduction in total system
utilization demonstrates diminishing returns, while the upper
bound on end-to-end latency increases approximately linearly.
The point at which the increase in latency outweighs the re-
duction in utilization is dependent on the system specifications
and application requirements.

Rate-Exploiting-Batching Results. Fig. 7, also compares the
utilization and latency of these randomly generated PGM
graphs before and after applying Rate-Exploiting Batching
(labeled RE). Notice that Rate-Exploiting Batching reduces
the total application utilization even further, i.e. lowers the
utilization curve. Consider the same batch size of N = 4
that previously reduced the number of processors required for
SRT schedulability guarantees from 6 to 2. By applying Rate-
Exploiting Batching, the average utilization dropped below
1, thus achieving SRT schedulability guarantees on only one
core. In general, the batch sizes that cause the largest decreases
in utilization have the smallest effect on end-to-end latency.
For example, in Fig. 7b, the largest reductions in utilization
are realized by batch sizes of N = 2 to about N = 6, as are
the smallest increases in end-to-end latency bounds. From this
we make the following observation.

Obs. 2. Rate-Exploiting Batching provides additional reduc-
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tions in utilization, and the greatest relative benefit is achieved
when it is applied to workloads with smaller batch sizes.

As described in Obs. 1, the reduction in utilization di-
minishes for larger batch sizes. Thus, the additional benefits
from RE batching are small relative to the consolidated, low-
utilization workload.

By modeling data-flow applications using the marginal cost
model and applying the batching techniques demonstrated
in this section, system designers can measure this point of
diminishing return, and make intelligent decisions regarding
the trade off between latency and utilization. In fact, by car-
rying out a similar analysis, designers can minimize demand
for processing resources subject to real-time constraints on
end-to-end latency. In many systems employing SDR, there
may be other applications competing for processor time, and
therefore it may be advantageous to further decrease utilization
to support those applications, at the expense of slightly higher
signal-processing latency, especially if bounds on this latency
can be guaranteed.

VII. CASE STUDY

To demonstrate the applicability of our marginal cost model
and batching techniques to real-world signal-processing appli-
cations we present the following case study. Fig. 8 shows a
modified open-source GNU Radio flowgraph that implements
a narrowband FM (NBFM) receiver [21]. The flowgraph
consists of a source block connected to a chain of processing
blocks with varying consume and produce requirements (e.g.
the FFT filter must consume three samples for every three
it produces, whereas Multiply Const is a one-to-one function
that controls volume). Note that we replaced the ZMQ Source
node from the original application (which receives signals via
socket connection) with a default GNU Radio signal source
generator operating at the same sample rate of 576kHz. We
additionally replaced the original Audio Sink with a Null Sink
and removed a GUI signal visualization block.

Background. In order to enable the types of measurements
required to carry out this case study, we modified the source
code of GNU Radio to allow its internal scheduling algorithms
to interact with the built-in real-time scheduling capabilities
present in most Linux-based operating systems, namely First-
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Fig. 8: Modified GNU Radio Narrowband FM Receiver Flowgraph [21].

In First-Out (FIFO) and Earliest Deadline First (EDF) schedul-
ing. To expose this functionality, a new set of API functions
were added to GNU Radio to allow the user to 1) select
their desired real-time scheduling policy at runtime, and 2)
in the case of EDF, specify the deadline, period, and runtime
parameters for each EDF-scheduled block within a flowgraph.
Internally, this API utilizes the Linux SCHED_F IFO policy for
FIFO block scheduling and SCHED_DEADLINE for Global
EDF, as these policies represent well-tested and commonly
available backends with drop-in compatibility in the GNU
Radio framework. In EDF, for example, each node in a
GNU Radio flowgraph contains a single computational task
corresponding to a Linux thread that the OS then schedules
according to the EDF parameters specified at the time of
initialization of the flowgraph.

Experiment Setup. For this experiment, we utilized the
scheduling API exposed by our custom GNU Radio version to
specify the runtime, deadline, and period parameters for EDF
scheduling of each individual block in the NBFM receiver
flowgraph. The EDF scheduler is only activated for cores 1-3
on a quad-core Raspberry Pi 5, and these cores are completely
isolated from the general Linux scheduler and from running
any processes or threads other than those belonging to GNU
Radio. Additionally, kernel preemption is disabled, and all
IRQ requests are excluded from being serviced on these cores,
ensuring that once a task is scheduled for execution on a core,
it will run to completion without interruption.

Similarly to the experiments presented in § VI, we wanted to
plot the average utilization and end-to-end latency for the flow-
graph scheduled under a NP G-EDF scheduling policy, and
across various batch sizes. This required that we determine the
execution time, period, and relative deadline for each block. To
determine the periods (and relative deadlines) we first derived
an execution rate for the source node from the desired batch
size and the 576kHz sample rate. We then used Lem. 1 and
the produce and consume relationships between the blocks
to calculate the remaining execution rates. To determine the
execution time for each block in the flowgraph across the
various batch sizes, we then performed identical experiments
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to those in Fig. 1 to estimate the block’s initialization/marginal
costs.

Results. Fig. 9 plots utilization, as well as the total execution
time required for the flowgraph to process 30,720 samples,
as a function of the batch size. Similarly to Fig. 7, we see
a point of diminishing returns at a batch size of about 750,
which indicates that N = 750 is an advantageous choice for
balancing the utilization vs. latency trade-off for this workload
on this platform. Note, however, that if lower latencies are
desirable, smaller batch sizes can enable lower latency. As
demonstrated by this case study, the marginal cost model
and batching techniques presented in this paper allow system
designers to make informed decisions when implementing
high-frequency dataflow applications, all while verifying that
real-time constraints are met.

VIII. RELATED WORK

Prior work has modeled and analyzed the performance
of the Synchronous Dataflow (SDF) model of computation
from a real-time perspective [22]-[26]. Although these ap-
proaches enable inter-graph parallelism, unlike some more
generalized real-time DAG scheduling models [14]-[18], they
do not consider batch size as a design parameter, nor do
they provide a framework by which to analyze the trade-off
between utilization and latency. Also included in this category
is Goddard [11], who was the first to derive node execution
rates from PGM graphs (an extension of SDF) and bound
latency for rate-based task sets on uniprocessors. In [12],
Liu and Anderson transform these rate-based task sets to
sporadic task sets, and derive tardiness bounds for PGM graphs
scheduled on multiprocessor soft real-time systems. Again,
neither [11] nor [12] enable selection of batch sizes, nor do
they provide an analysis of any design trade-offs. Another
body of work has evaluated the trade-off between buffer sizes
and throughput for SDF graphs [27], [28], which is useful for
managing memory requirements.

Outside of the real-time field, there has been extensive
work to improve the performance and predictability of SDR
applications on General Purpose Processors. Notable examples
of these implementations include Sora [29], which provides
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support for real-time wireless tasks by dedicating cores to SDR
tasks, and USRP [30], which is commonly used in conjunction
with GNU Radio. In fact, the work in [31] uses GNU Radio for
real-time wireless signal classification. However, no changes
(other than minimizing the number of block threads) are
made to the best-effort scheduling approach taken by GNU
Radio. More recent work attempts to benchmark, improve,
and overhaul the GNU Radio scheduler [2], [32]. In fact,
one of the goals of the upcoming GNU Radio 4.0 release
is to deliver a new modular scheduler for application-specific
development. To our knowledge, however, this paper is the
first to enable real-time scheduling support for GNU Radio-
like SDR applications on GPPs.

In regards to the marginal cost model, similarities can
be drawn between our model and the job-family setup cost
problem, in which jobs are assigned to families, and switching
between jobs of different families incurs some non-negligible
setup cost [33]. In the context of the marginal cost model
and batching, one could consider jobs of the same task as
belonging to the same family, and that batching jobs minimizes
the number of “setup costs,” or initialization costs, as we
call them. However, the key insight of batching jobs is to
minimize initialization costs by consolidating deadlines and
adjusting them where possible, whereas under the job-family
setup cost model, the goal is to reorder task executions subject
to their fixed deadline constraints. Furthermore, there is limited
opportunity to reorder jobs of a DAG-based task system,
as there are strict precedence constraints between tasks that
determine their order of execution, therefore solutions to the
job-family setup cost problem do not directly apply.

IX. DISCUSSION

The goal of this paper is to provide a practical framework
to evaluate the utilization-latency trade-off that exists in high
frequency DAG-based dataflow applications. Because we ap-
proach the problem from the real-time perspective, however,
we also wish to discuss the optimality and computational
complexity of our batching techniques.

Complexity. Both the job-family setup cost problem [33], and
the problem of finding the minimum buffer sizes for an SDF
graph subject to a throughput requirement [34], are known
to be NP-hard. Based on the intractability of these similar
problems, we conjecture that selecting the optimal batch sizes
for minimizing latency subject to a utilization constraint is also
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NP-hard, although formalizing this claim is outside the scope
of this paper.

Optimality. As shown in [12], G-EDF-like schedulers are
able to soft-real-time-optimally schedule a PGM graph on
a multiprocessor system. In other words, if total utilization
< M, the graph can be scheduled under G-EDF on M cores
with no utilization loss. Therefore, uniform batching upon
G-EDF in the marginal cost model, which reduces the total
utilization asymptotically as batch size grows, also enables a
claim of optimality. In other words, if it is possible to construct
a schedule in the marginal cost model that has bounded end-to-
end latency, then there exists a uniform batch size that reduces
the utilization to < M, which under G-EDF per [12], implies
optimality. (Note that large batch sizes necessary for optimality
in some cases may still be impractical based on memory
constraints, latency requirements, etc., even if theoretically
optimal.) Therefore, choosing batch sizes to achieve a finite
bound can be done in polynomial time, but choosing batch
sizes to minimize latency subject to a utilization constraint is
conjectured to be NP-complete.

X. CONCLUSION

Software-defined radio (SDR) is an emerging solution to
achieve high-performance wireless signal-processing with in-
creased flexibility. However, current approaches to implement-
ing SDR on general-purpose processors suffer from inefficient
resource utilization and unpredictable timing behavior. In this
paper, we presented a marginal cost model and batching
techniques that enable system designers to empirically evaluate
the trade-off between utilization and end-to-end latency, and
make implementation decisions that are backed by real-time
guarantees. We presented evaluations of randomly generated
synthetic task sets and showed that our marginal cost model
and batching techniques can be applied to make informed
implementation decisions for a real signal-processing applica-
tion. We extended GNU Radio to support real-time scheduling
in Linux and presented a case study applying these batching
concepts to narrow-band FM receiver.
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