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The Rise of Data Intensive CPS Tasks

● Tasks in real-time, embedded, and CPS are increasingly data intensive

● Autonomous control, image processing, signal processing, etc.
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Data Dependencies in CPS

● CPS tasks have data dependencies

● Example: Autoware pipeline
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https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/node-diagram/


Data Dependencies in CPS
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Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines
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Leveraging Multicore Hardware in CPS

● Multicores exploit inter- and intra-DAG parallelism

○ Lower DAG latency

○ Higher system throughput
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Leveraging Multicore Hardware in CPS

● Multicores exploit inter- and intra-DAG parallelism

○ Lower DAG latency

○ Higher system throughput

● Shared resources such as last-level cache and 

memory bandwidth are statistically multiplexed

○ Good average case performance
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Challenges on Multicore

● Contention for shared resources can 

cause interference between tasks
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Challenges on Multicore

● Contention for shared resources can 

cause interference between tasks

● Example: WCET slowdown of PARSEC 

benchmarks due to interference

9
Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 2019.
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Challenges on Multicore

● Contention for shared resources can 

cause interference between tasks

● Example: WCET slowdown of PARSEC 

benchmarks due to interference
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Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 2019.
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Potential interference → overly-conservative worst-case timing analysis →
over-provisioning of hardware resources



Resource Contention: State of the Art
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Resource Contention: State of the Art
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Rasco: Fine-grain Resource Control with Guarantees
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We want the best of both worlds:

Tight worst-case timing analysis via resource isolation

Dynamic allocation of resources based on fine-grain needs



Research Questions

1. How do we design a task model that enables dynamic resource allocation 

and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

● resource efficiency, 

● average-case latency, 

● and hard real-time schedulability 

of DAG applications?
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Contributions

● To answer RQ1, we propose a resource-dependent multi-phase task model

which enables worst-case timing analysis under dynamic resource allocation

● To answer RQ2, we develop Rasco, a resource allocation and scheduling co-

design algorithm for DAG applications on multicore

● We then implement a prototype of Rasco to evaluate the safety and utility of 

our approach in a real-time operating system
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Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model

3. Rasco: Resource Allocation and Scheduling Co-design

4. Numerical Evaluation

5. Prototype Evaluation and Overhead Accounting

6. Conclusion
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Task Execution Phases

FFT with 10% of LLC and memory BW
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Task Execution Phases

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW
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Task Execution Phases

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW
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Middle phase is highly resource intensive



Task Execution Phases

• Tasks have different execution phases
• Phases vary in resource intensity

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW
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A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW
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A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW
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Need a resource-dependent task model that is generalizable, 
but still tight.



A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW
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Step 1: use changepoint detection to identify phases
Step 2: compute worst-case instruction rates for each phase

Phase 4

Phase 4



WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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Delay between 
resource 
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and rate change



WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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To get WCET under 
dynamic budget:

• Compose worst-
case rates from 
constant budgets

• Incorportate delay 
at reconfiguration 
points



Research Questions

1. How do we design a task model that enables dynamic resource allocation 

and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

● resource efficiency, 

● average-case latency, 

● and hard real-time schedulability 

of DAG applications?
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Resource Allocation and Scheduling
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Resource Allocation and Scheduling
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Resource Allocation and Scheduling
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Resource Allocation and Scheduling
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Resource Allocation and Scheduling
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Resource Allocation and Scheduling
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The Case for Co-Design

40

Maximizing resource efficiency ≠ maximizing schedulability



The Case for Co-Design
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Maximizing resource efficiency ≠ maximizing schedulability

Resource allocation and scheduling must be co-designed.



Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model
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6. Conclusion
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Rasco Algorithm Overview
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Rasco Algorithm Overview
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Rasco Pre-Processing: Deadline decomposition
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Rasco Pre-Processing: Deadline decomposition
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Rasco Pre-Processing: Deadline decomposition
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Rasco Pre-Processing: Stack all DAG tasks (G1, G2)
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Step 1: Start at t = 0, give out remaining resources at t
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Step 1: Start at t = 0, give out remaining resources at t
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Step 1: Start at t = 0, give out remaining resources at t
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Step 2: Schedule m = 2 tasks with smallest deadlines
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Step 2: Schedule m = 2 tasks with smallest deadlines
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Step 3: Get next t, repeat
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D

Step 3: Get next t, repeat
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Step 3: Get next t, repeat
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Step 3: Get next t, repeat
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Step 3: Get next t, repeat
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Step 3: Get next t, repeat
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Step 4: Finish and squash onto 2 cores
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Step 5: Check if schedulable
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Numerical Evaluation Setup

● Profiled benchmarks from PARSEC and SPLASH2x

● Used Intel’s CAT and MemGuard to partition shared resources

● Constructed multi-phase models using changepoint detection

● Randomly generated 100 tasksets per utilization step [X. Dai. dag-gen-rnd] 

● Ran Rasco on each taskset

● Compared schedulability and latency against a state-of-the-art deadline 

decomposition method using even partition of resources to cores

○ Schedulability test: baseline-test

○ Simulated schedule under global EDF: baseline-sim
64
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Schedulability Results
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Latency Results
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LITMUSRT

Prototype in LITMUSRT
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LITMUSRT

Rasco Prototype Features
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Overhead-Aware Rasco Extension
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Min (μs) Mean (μs) 99th (μs) Max (μs)

Rasco 
Scheduling 0.02 0.03 0.05 18.10

CAT +
MemGuard 1.66 2.53 5.80 23.30

Observed small runtime overheads 



Overhead-Aware Rasco Extension

71

Min (μs) Mean (μs) 99th (μs) Max (μs)

Rasco 
Scheduling 0.02 0.03 0.05 18.10

CAT +
MemGuard 1.66 2.53 5.80 23.30

99.6% of the tasksets had less than 2% overhead 



Empirical Evaluation on Prototype

● Ran Rasco’s output schedules on our prototype
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Empirical Evaluation on Prototype

● Ran Rasco’s output schedules on our prototype
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Empirical schedulability always exceeds theoretical guarantee 



Recap

● The move to multicore introduces challenges for timing analysis

● Resource contention → overly-conservative analysis → over-provisioning
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Recap

● No prior work had achieved the resource efficiency of fine-grained dynamic

resource allocation while providing hard real-time guarantees

75

Resource
aware?

DAG 
support?

Resource 
control?

Dynamic 
control?

Timing 
analysis?

Rasco



Conclusion

● Proposed a resource-dependent multi-phase model which enables worst-

case timing analysis under dynamic resource allocation

● Developed a resource allocation and scheduling co-design algorithm for DAG 

applications on multicore that improves

o resource efficiency,

o latency, and

o schedulability

● Implemented a prototype of Rasco to evaluate the safety and utility of our 

approach in a real-time operating system
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Conclusion

● Proposed a resource-dependent multi-phase model which enables worst-

case timing analysis under dynamic resource allocation

● Developed a resource allocation and scheduling co-design algorithm for DAG 

applications on multicore that improves

o resource efficiency,
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o schedulability

● Implemented a prototype of Rasco to evaluate the safety and utility of our 

approach in a real-time operating system
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