
Rasco: Resource Allocation and Scheduling
Co-design for DAG Applications on Multicore

Abigail Eisenklam, Robert Gifford, Georgiy A. Bondar*, Yifan Cai, Tushar SialT,
Linh Thi Xuan Phan, Abhishek HalderT*

* T

ACM SIGBED International Conference on Embedded Software (EMSOFT 2025)

The Rise of Data Intensive CPS Tasks

● Tasks in real-time, embedded, and CPS are increasingly data intensive

● Autonomous control, image processing, signal processing, etc.

2

https://www.jobyaviation.com/

https://www.jobyaviation.com/

Data Dependencies in CPS

● CPS tasks have data dependencies

● Example: Autoware pipeline

3

Sensing
(Camera)

Perception

Localization

Sensing
(LiDAR)

Sensing
(Radar)

Planning Control

https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/node-diagram/

Data Dependencies in CPS

4

Sensing
(Camera)

Perception

Localization

Sensing
(LiDAR)

Sensing
(Radar)

Planning Control

Process input
periodically

Produce fresh control
output every 10 ms to

ensure safety

Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines

5

relative deadline = 7 ms

relative deadline = 15 ms

relative deadline = 10 ms

Sensing
(Camera)

Perception

Localization

Sensing
(LiDAR)

Sensing
(Radar)

Planning Control

Leveraging Multicore Hardware in CPS

● Multicores exploit inter- and intra-DAG parallelism

○ Lower DAG latency

○ Higher system throughput

6

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2 …

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Scheduler

Leveraging Multicore Hardware in CPS

● Multicores exploit inter- and intra-DAG parallelism

○ Lower DAG latency

○ Higher system throughput

● Shared resources such as last-level cache and

memory bandwidth are statistically multiplexed

○ Good average case performance

7

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2 …

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Scheduler

Challenges on Multicore

● Contention for shared resources can

cause interference between tasks

8

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2 …

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Scheduler

Challenges on Multicore

● Contention for shared resources can

cause interference between tasks

● Example: WCET slowdown of PARSEC

benchmarks due to interference

9
Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 2019.

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2 …

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Scheduler

Challenges on Multicore

● Contention for shared resources can

cause interference between tasks

● Example: WCET slowdown of PARSEC

benchmarks due to interference

10
Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 2019.

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2 …

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Scheduler

Potential interference → overly-conservative worst-case timing analysis →
over-provisioning of hardware resources

Resource Contention: State of the Art

11

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

DNA [Gifford et al. RTAS ‘20] ✗ ✗

Resource Contention: State of the Art

12

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗
No resource

isolation, can
still have

interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

DNA [Gifford et al. RTAS ‘20] ✗ ✗

Resource Contention: State of the Art

13

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗
No resource

isolation, can
still have

interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

DNA [Gifford et al. RTAS ‘20] ✗ ✗

Resource Contention: State of the Art

14

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗
No resource

isolation, can
still have

interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20] ✗ ✗

Resource Contention: State of the Art

15

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗
No resource

isolation, can
still have

interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20] ✗ ✗

Resource Contention: State of the Art

16

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

✗ ✗
No resource

isolation, can
still have

interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25] ✗ ✗

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20] ✗ ✗
Dynamic

allocation breaks
timing guarantee

Rasco: Fine-grain Resource Control with Guarantees

17

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Rasco [this work]

We want the best of both worlds:

Tight worst-case timing analysis via resource isolation

Dynamic allocation of resources based on fine-grain needs

Research Questions

1. How do we design a task model that enables dynamic resource allocation

and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

● resource efficiency,

● average-case latency,

● and hard real-time schedulability

of DAG applications?

18

Contributions

● To answer RQ1, we propose a resource-dependent multi-phase task model

which enables worst-case timing analysis under dynamic resource allocation

● To answer RQ2, we develop Rasco, a resource allocation and scheduling co-

design algorithm for DAG applications on multicore

● We then implement a prototype of Rasco to evaluate the safety and utility of

our approach in a real-time operating system

19

Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model

3. Rasco: Resource Allocation and Scheduling Co-design

4. Numerical Evaluation

5. Prototype Evaluation and Overhead Accounting

6. Conclusion

20

Task Execution Phases

FFT with 10% of LLC and memory BW

21

Task Execution Phases

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW

22

Task Execution Phases

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW

23

Middle phase is highly resource intensive

Task Execution Phases

• Tasks have different execution phases
• Phases vary in resource intensity

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW

24

A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW

25

A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW

26

Need a resource-dependent task model that is generalizable,
but still tight.

A General Model for Resource-Dependent Phases

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW

27

Step 1: use changepoint detection to identify phases
Step 2: compute worst-case instruction rates for each phase

Phase 4

Phase 4

WCET Under Dynamic Resource Allocation

28

WCET Under Dynamic Resource Allocation

29

Phases and
worst-case rates

from multi-
phase model

WCET Under Dynamic Resource Allocation

30

Delay between
resource

reconfiguration
and rate change

WCET Under Dynamic Resource Allocation

31

WCET Under Dynamic Resource Allocation

32

To get WCET under
dynamic budget:

• Compose worst-
case rates from
constant budgets

• Incorportate delay
at reconfiguration
points

Research Questions

1. How do we design a task model that enables dynamic resource allocation

and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

● resource efficiency,

● average-case latency,

● and hard real-time schedulability

of DAG applications?

33

E

Resource Allocation and Scheduling

34

E F

G1

G2

B

CA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

D

Core 0

Core 1

Time (ms)

Suppose we are at time t = 7
and need to schedule D and F

C
deadline G1

deadline G2

Resource Allocation and Scheduling

35

E F

G1

G2

A

B

C

D

Height of task = proportion of
shared resources allocated

50%

50%

E B

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Core 0

Core 1

Time (ms)

CC

Resource Allocation and Scheduling

36

E F

G1

G2

A

B

C

D

Height of task = proportion of
shared resources allocated

60%

40%

E B

A
Core 0

Core 1

Time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CC

D

F

Resource Allocation and Scheduling

37

E F

G2

A

B

C

D

G1

E B

A
Core 0

Core 1

Time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Shared resources at t = 7:

CC

Resource Allocation and Scheduling

38

Highly resource
intensive!

E F

G2

A

B

C

D

G1

D

F

Shared resources at t = 7:

E B

A
Core 0

Core 1

Time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CC

Resource Allocation and Scheduling

39

Deadline miss!

E F

G2

A

B

C

D

G1

D

F

Shared resources at t = 7:

E B

A
Core 0

Core 1

Time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Highly resource
intensive!

CC

The Case for Co-Design

40

Maximizing resource efficiency ≠ maximizing schedulability

The Case for Co-Design

41

Maximizing resource efficiency ≠ maximizing schedulability

Resource allocation and scheduling must be co-designed.

Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model

3. Rasco: Resource Allocation and Scheduling Co-design

4. Numerical Evaluation

5. Prototype Evaluation and Overhead Accounting

6. Conclusion

42

Rasco Algorithm Overview

43

D

E

A

B

C

F

G1

G2

G3

Input: periodic DAG tasks and the
multi-phase model for each task

Rasco Algorithm Overview

44

D

E

A

B

C

F

G1

G2

G3

Input: periodic DAG tasks and the
multi-phase model for each task

Output: task schedule with partition of
shared resources at each scheduling point

Rasco

Rasco Pre-Processing: Deadline decomposition

45

d = 10

A
B

C

DA
B

C

D

dA = 3

dB = dC = 5

dD = 2

D

B

C

Rasco Pre-Processing: Deadline decomposition

46

A
0 1 2 3 4 5 6 7 8 9 10 11

d = 10

A
B

C

DA
B

C

D

dA = 3

dB = dC = 5

dD = 2

D

B

C

Rasco Pre-Processing: Deadline decomposition

47

A
0 1 2 3 4 5 6 7 8 9 10 11

d = 10

A
B

C

DA
B

C

D

dA = 3

dB = dC = 5

dD = 2

Rasco Pre-Processing: Stack all DAG tasks (G1, G2)

48

D

B

CA
0 1 2 3 4 5 6 7 8 9 10 11 12

G

H

FE

D

Step 1: Start at t = 0, give out remaining resources at t

49t

B

CA
0 1 2 3 4 5 6 7 8 9 10 11 12

G

H

FE

Step 1: Start at t = 0, give out remaining resources at t

50

Maximize resource efficiency at time t

B

CA
0 1 2 3 4 5 6 7 8 9 10 11 12

GFE

H

D

t

Step 1: Start at t = 0, give out remaining resources at t

51

B

CA
0 1 2 3 4 5 6 7 8 9 10 11 12

GFE
Reduce the maximum
parallelism at any time

to the number of
available cores (m = 2).

H

D

t

Step 2: Schedule m = 2 tasks with smallest deadlines

52

0 1 2 3 4 5 6 7 8 9 10 11 12

B

CA

GFE

H

D

t

Step 2: Schedule m = 2 tasks with smallest deadlines

53

0 1 2 3 4 5 6 7 8 9 10 11 12

B

CA

G

H

FE

D

t

Step 3: Get next t, repeat

54

0 1 2 3 4 5 6 7 8 9 10 11 12

B

CA

G

H

FE

D

t

Step 3: Get next t, repeat

55

0 1 2 3 4 5 6 7 8 9 10 11 12

CA

G

H

FE

Maximize resource efficiency at t

B

D

t

D

Step 3: Get next t, repeat

56

0 1 2 3 4 5 6 7 8 9 10 11 12

A

G

H

FE

Schedule m tasks with earliest deadlines

B

C

t

D

Step 3: Get next t, repeat

57

0 1 2 3 4 5 6 7 8 9 10 11 12

A

G

H

FE

B

C

t

D

Step 3: Get next t, repeat

58

0 1 2 3 4 5 6 7 8 9 10 11 12

A

G

H

FE

Maximize resource efficiency at t

B

C

t

D

Step 3: Get next t, repeat

59

0 1 2 3 4 5 6 7 8 9 10 11 12

A

G

H

FE

B

C

t

D

Step 3: Get next t, repeat

60

0 1 2 3 4 5 6 7 8 9 10 11 12

A

G

H

FE

Maximize resource efficiency at t

B

C

F

t

G
D

Step 4: Finish and squash onto 2 cores

61

0 1 2 3 4 5 6 7 8 9 10 11 12

A
H FE

B C
F

t

G
D

Step 5: Check if schedulable

62

0 1 2 3 4 5 6 7 8 9 10 11 12

A
H FE

B C
F

Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model

3. Rasco: Resource Allocation and Scheduling Co-design

4. Numerical Evaluation

5. Prototype Evaluation and Overhead Accounting

6. Conclusion

63

Numerical Evaluation Setup

● Profiled benchmarks from PARSEC and SPLASH2x

● Used Intel’s CAT and MemGuard to partition shared resources

● Constructed multi-phase models using changepoint detection

● Randomly generated 100 tasksets per utilization step [X. Dai. dag-gen-rnd]

● Ran Rasco on each taskset

● Compared schedulability and latency against a state-of-the-art deadline

decomposition method using even partition of resources to cores

○ Schedulability test: baseline-test

○ Simulated schedule under global EDF: baseline-sim
64

https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd

Schedulability Results

65

Heavier workload

B
e

tt
e

r
re

s
u

lt
s

Can schedule much
heavier workloads on

m=6 cores

See paper for
additional results.

Latency Results

66

Heavier workload

B
e

tt
e

r
re

s
u

lt
s

1.7x speedup

Talk Outline

1. Introduction/Background

2. The Resource-Dependent Multi-Phase Model

3. Rasco: Resource Allocation and Scheduling Co-design

4. Numerical Evaluation

5. Prototype Evaluation and Overhead Accounting

6. Conclusion

67

LITMUSRT

Prototype in LITMUSRT

68

L1

Core 0

L2

L1

Core 1

L2

DRAM (main memory)

MemGuard

E D

CAT

Prototype state at t2

LITMUSRT

Rasco Prototype Features

69

L1

Core 0

L2

L1

Core 1

L2

DRAM (main memory)

MemGuard

CAT

Rasco Prototype

E D

1. Time-triggered table-driven
scheduling in LITMUSRT

2. Runtime reconfiguration of CAT +
MemGuard in LITMUSRT

3. Logic for handling job under-runs

4. Early releasing and work stealing

Overhead-Aware Rasco Extension

70

Min (μs) Mean (μs) 99th (μs) Max (μs)

Rasco
Scheduling 0.02 0.03 0.05 18.10

CAT +
MemGuard 1.66 2.53 5.80 23.30

Observed small runtime overheads

Overhead-Aware Rasco Extension

71

Min (μs) Mean (μs) 99th (μs) Max (μs)

Rasco
Scheduling 0.02 0.03 0.05 18.10

CAT +
MemGuard 1.66 2.53 5.80 23.30

99.6% of the tasksets had less than 2% overhead

Empirical Evaluation on Prototype

● Ran Rasco’s output schedules on our prototype

72

Empirical Evaluation on Prototype

● Ran Rasco’s output schedules on our prototype

73

Empirical schedulability always exceeds theoretical guarantee

Recap

● The move to multicore introduces challenges for timing analysis

● Resource contention → overly-conservative analysis → over-provisioning

74

L1

Core 0

L2

Last-level Shared Cache

L1

Core 7

L2

L1

Core 1

L2
…

DRAM (main memory)

Memory Bus

foo.c bar.c idk.c

Recap

● No prior work had achieved the resource efficiency of fine-grained dynamic

resource allocation while providing hard real-time guarantees

75

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Rasco

Conclusion

● Proposed a resource-dependent multi-phase model which enables worst-

case timing analysis under dynamic resource allocation

● Developed a resource allocation and scheduling co-design algorithm for DAG

applications on multicore that improves

o resource efficiency,

o latency, and

o schedulability

● Implemented a prototype of Rasco to evaluate the safety and utility of our

approach in a real-time operating system

76

Conclusion

● Proposed a resource-dependent multi-phase model which enables worst-

case timing analysis under dynamic resource allocation

● Developed a resource allocation and scheduling co-design algorithm for DAG

applications on multicore that improves

o resource efficiency,

o latency, and

o schedulability

● Implemented a prototype of Rasco to evaluate the safety and utility of our

approach in a real-time operating system

77Thank you! https://github.com/abbyeisenklam/Rasco

https://github.com/abbyeisenklam/Rasco

	Slide 1: Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore
	Slide 2: The Rise of Data Intensive CPS Tasks
	Slide 3: Data Dependencies in CPS
	Slide 4: Data Dependencies in CPS
	Slide 5: Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines
	Slide 6: Leveraging Multicore Hardware in CPS
	Slide 7: Leveraging Multicore Hardware in CPS
	Slide 8: Challenges on Multicore
	Slide 9: Challenges on Multicore
	Slide 10: Challenges on Multicore
	Slide 11: Resource Contention: State of the Art
	Slide 12: Resource Contention: State of the Art
	Slide 13: Resource Contention: State of the Art
	Slide 14: Resource Contention: State of the Art
	Slide 15: Resource Contention: State of the Art
	Slide 16: Resource Contention: State of the Art
	Slide 17: Rasco: Fine-grain Resource Control with Guarantees
	Slide 18: Research Questions
	Slide 19: Contributions
	Slide 20: Talk Outline
	Slide 21: Task Execution Phases
	Slide 22: Task Execution Phases
	Slide 23: Task Execution Phases
	Slide 24: Task Execution Phases
	Slide 25: A General Model for Resource-Dependent Phases
	Slide 26: A General Model for Resource-Dependent Phases
	Slide 27: A General Model for Resource-Dependent Phases
	Slide 28: WCET Under Dynamic Resource Allocation
	Slide 29: WCET Under Dynamic Resource Allocation
	Slide 30: WCET Under Dynamic Resource Allocation
	Slide 31: WCET Under Dynamic Resource Allocation
	Slide 32: WCET Under Dynamic Resource Allocation
	Slide 33: Research Questions
	Slide 34: Resource Allocation and Scheduling
	Slide 35: Resource Allocation and Scheduling
	Slide 36: Resource Allocation and Scheduling
	Slide 37: Resource Allocation and Scheduling
	Slide 38: Resource Allocation and Scheduling
	Slide 39: Resource Allocation and Scheduling
	Slide 40: The Case for Co-Design
	Slide 41: The Case for Co-Design
	Slide 42: Talk Outline
	Slide 43: Rasco Algorithm Overview
	Slide 44: Rasco Algorithm Overview
	Slide 45: Rasco Pre-Processing: Deadline decomposition
	Slide 46: Rasco Pre-Processing: Deadline decomposition
	Slide 47: Rasco Pre-Processing: Deadline decomposition
	Slide 48: Rasco Pre-Processing: Stack all DAG tasks (G1, G2)
	Slide 49: Step 1: Start at t = 0, give out remaining resources at t
	Slide 50: Step 1: Start at t = 0, give out remaining resources at t
	Slide 51: Step 1: Start at t = 0, give out remaining resources at t
	Slide 52: Step 2: Schedule m = 2 tasks with smallest deadlines
	Slide 53: Step 2: Schedule m = 2 tasks with smallest deadlines
	Slide 54: Step 3: Get next t, repeat
	Slide 55: Step 3: Get next t, repeat
	Slide 56: Step 3: Get next t, repeat
	Slide 57: Step 3: Get next t, repeat
	Slide 58: Step 3: Get next t, repeat
	Slide 59: Step 3: Get next t, repeat
	Slide 60: Step 3: Get next t, repeat
	Slide 61: Step 4: Finish and squash onto 2 cores
	Slide 62: Step 5: Check if schedulable
	Slide 63: Talk Outline
	Slide 64: Numerical Evaluation Setup
	Slide 65: Schedulability Results
	Slide 66: Latency Results
	Slide 67: Talk Outline
	Slide 68: Prototype in LITMUSRT
	Slide 69: Rasco Prototype Features
	Slide 70: Overhead-Aware Rasco Extension
	Slide 71: Overhead-Aware Rasco Extension
	Slide 72: Empirical Evaluation on Prototype
	Slide 73: Empirical Evaluation on Prototype
	Slide 74: Recap
	Slide 75: Recap
	Slide 76: Conclusion
	Slide 77: Conclusion

