ACM SIGBED International Conference on Embedded Software (EMSOFT 2025)

Rasco: Resource Allocation and Scheduling
Co-design for DAG Applications on Multicore

Abigail Eisenklam, Robert Gifford, Georgiy A. Bondar*, Yifan Cai, Tushar SialT,
Linh Thi Xuan Phan, Abhishek Halder™

160 1T
&Penn (|0 SANTA CRUL SRty

The Rise of Data Intensive CPS Tasks

e Tasks in real-time, embedded, and CPS are increasingly data intensive

e Autonomous control, image processing, signal processing, etc.

Joby Acquires Xwing Autonomy

Flight

June 04, 2024 7:00am EDT

Division, Looks Ahead to Autonomous

I pownload as PDF

https://www.jobyaviation.com/

https://www.jobyaviation.com/

Data Dependencies in CPS

e CPS tasks have data dependencies

e Example: Autoware pipeline

-
Sensing
(LiDAR)

.

Perception

p
(gzrrﬁg;g) Planning]—[Control]
.

[Localization

Sensing
(Radar)

https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/node-diagram/

Data Dependencies in CPS

Process input

periodically
p
Sensing
™ (LiDAR)
. Perception
p
Sensing _
------ .> .
(Camera) Planning]—[Control] >
.
Localization Produce fresh control

Sensing output every 10 ms to
""" (Radar) ensure safety

Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines

relative deadline =7 ms

>
relative deadline = 10 ms

ﬂ Planning

Sensing
(LIDAR)

Perception

Sensing
(Camera)

Control

\ 4

Localization

Sensing
(Radar)

relative deadline =15 ms

>

==

Leveraging Multicore Hardware in CPS

e Multicores exploit inter- and intra-DAG parallelism

O

O

Lower DAG latency

Higher system throughput

foo.cJ bar.cJ idk.c
\ | Scheduler

Core 0 Core 1 Core 7
L1 L1 L1
L2 L2 L2

A

ﬁl

A 4

1

A 4

Last-level Shared Cache

\ 4

Memory Bus

DRAM (main memory)

Leveraging Multicore Hardware in CPS

e Multicores exploit inter- and intra-DAG parallelism

O

O

e Shared resources such as last-level cache and
memory bandwidth are statistically multiplexed

O

Lower DAG latency

Higher system throughput

Good average case performance

foo.cJ bar.cJ idk.c
\ | Scheduler

Core 0 Core 1 Core 7
L1 L1 L1
L2 L2 L2

A

ﬂl

A 4

1

A 4

Last-level Shared Cache

\ 4

Memory Bus

DRAM (main memory)

Challenges on Multicore

e Contention for shared resources can
cause interference between tasks

foo.cJ bar.cJ idk.c
\ | Scheduler

Core 0 Core 1 Core 7
L1 L1 L1
L2

‘LIz

Last-level Shared Cache

Memory Bus

DRAM (main memory)

Challenges on Multicore

Contention for shared resources can
cause interference between tasks

Example: WCET slowdown of PARSEC
benchmarks due to interference

foo.cJ bar.cJ idk.c
\ | Scheduler

Core 0 Core 1 Core 7
L1 L1 L1
L2

Last-level Shared Cache

1.8F e
Hl Alone
16/ Bl Pollute
2 14| [PolluteCAT | |
E
o1.2¢
7]
1 L
0.8
> .2 @ . P 2 & 2K &S
2)
LSS E 09‘&.{}% K Q,&&\&o ¥ oé&
X X N < S ¥ QTS
RN P O
D 0 F % P
Q o &8

Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 20179.

Memory Bus

DRAM (main memory)

Challenges on Multicore

e Contention for shared resources can f°°-CJ baf-CJ idk.c
cause interference between tasks H | Scheduler |
e Example: WCET slowdown of PARSEC C°Lr1€ 0 C°Lr1e1 COer ’/
benchmarks due to interference ‘Lf LIZ;. - ?LZ
Bt EEAone |
1.6 - Bl Pollute] 5
g ial ETPolluteCAT | Last-level Shared Cache
g 1.2
» Memory Bus
1 L
|

Potential interference — overly-conservative worst-case timing analysis —
over-provisioning of hardware resources

Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 20179.

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

DNA [Gifford et al. RTAS ‘20]

11

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

No resource
isolation, can
still have
interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

DNA [Gifford et al. RTAS ‘20]

12

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

No resource
isolation, can
still have
interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

DNA [Gifford et al. RTAS ‘20]

13

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

No resource
isolation, can
still have
interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20]

14

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

No resource
isolation, can
still have
interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20]

15

Resource Contention: State of the Art

Resource
aware?

DAG
support?

Resource
control?

Dynamic
control?

Timing
analysis?

Takeaway

[Shi et al. RTAS ‘24]
[Casini et al. RTAS ‘20]
[Tessler et al. RTSS ‘23]
[Zhao et al. RTNS ‘23]

v

v

X

X

v

No resource
isolation, can
still have
interference

CaM [Xu et al. RTAS ‘19]
MMO [Sun et al. ECRTS ‘25]

v

X

v

X

v

Static allocation
is resource
inefficient

DNA [Gifford et al. RTAS ‘20]

Dynamic
allocation breaks
timing guarantee

16

Rasco: Fine-grain Resource Control with Guarantees

Resource | DAG Resource | Dynamic | Timing
aware? support? | control? | control? | analysis?

Rasco [this work] \/ \/ \/ \/ \/

We want the best of both worlds:
v/ Tight worst-case timing analysis via resource isolation

v/ Dynamic allocation of resources based on fine-grain needs

17

Research Questions

1. How do we design a task model that enables dynamic resource allocation
and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

e resource efficiency,
e average-case latency,
e and hard real-time schedulability

of DAG applications?

18

Contributions

e To answer RQ1, we propose a resource-dependent multi-phase task model
which enables worst-case timing analysis under dynamic resource allocation

e To answer RQ2, we develop Rasco, a resource allocation and scheduling co-
design algorithm for DAG applications on multicore

e We then implement a prototype of Rasco to evaluate the safety and utility of
our approach in a real-time operating system

19

Talk Outline

1.

o o W N

Introduction/Background

The Resource-Dependent Multi-Phase Model

Rasco: Resource Allocation and Scheduling Co-design
Numerical Evaluation

Prototype Evaluation and Overhead Accounting

Conclusion

20

Task Execution Phases

Instruction Rate (x10°9)

0
o

6.0

4.0 |

2.0 -

0.0

WCET = 1.37 s

o® oo .:n .\o\
- ... " .0' \.o o %o
- Gw e

%

L

0.0 0.5 1.0 1.5 2.0

Cumulative Instruction Count (x10°)

FFT with 10% of LLC and memory BW

21

Task Execution Phases

Instruction Rate (x10°9)

8.0

6.0

4.0 |

2.0 -

0.0

WCET = 1.37 s

by

o® oo .:n .\o\
.‘- ... " .0' \'- o %o
- om am

%

L

0.0 0.5 1.0 1.5 2.0

Cumulative Instruction Count (x10°)

FFT with 10% of LLC and memory BW

Instruction Rate (x10°9)

WCET = 0.48 s
8.0
6.0 - # - : 'h—.'
o0 H 8
4.0 | ; ‘N, |‘ |
BT
ol J lI
0.0 — . . ‘ |
0.0 0.5 1.0 1.5 2.0

Cumulative Instruction Count (x10°)

FFT with 50% of LLC and memory BW

22

Task Execution Phases

WCET = 1.37 s

WCET = 0.48 s

Instruction Rate (x10°9)
Instruction Rate (x10°9)

FFT with 10% of LLC and memory B with 50% of LLC and memory BW

Middle phase is highly resource intensive

23

Task Execution Phases

g WCET = 1.37 s g WCET = 0.48 s
= 8.0 - 8.0
X X
¢ ° ° m
© e © 1 oL e’
€ 40/ f & C 40 ; ‘N@ ; |
M T
- | o ©° o0 .:n .\.o\ S J H
‘HJ 2.0 =® ...".‘. ¥ o ®e ‘HJ 2.0 u
- o en o 3
o W o
£ 0.0 - - : : : £ 0.0 - : ; ‘ ‘
c 0.0 0.5 1.0 1.5 2.0 c 0.0 0.5 1.0 1.5 2.0
Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW

» Phases vary in resource intensity 24

[- Tasks have different execution phases]

A General Model for Resource-Dependent Phases

WCET = 6.25 s
6.0

5.0 |
4.0 |
3.0 { -
2.0 |
1.0 -

0.0

Instruction Rate (x1069)

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

Canneal with 10% of LLC and mem BW

6.0
5.0
4.0
3.0
2.0
1.0
0.0

Instruction Rate (x10¢)

WCET = 1.27 s

| 1

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

Canneal with 50% of LLC and mem BW

25

A General Model for Resource-Dependent Phases

WCET = 6.25 s
6.0

5.0 |
4.0 |
3.0 { -
2.0 |
1.0 -

0.0

Instruction Rate (x1069)

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

Canneal with 10% of LLC and mem BW

6.0
5.0
4.0
3.0
2.0
1.0
0.0

Instruction Rate (x10¢)

WCET = 1.27 s

| 1

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

Canneal with 50% of LLC and mem BW

[Need a resource-dependent task model that is generalizable,}

but still tight.

26

A General Model for Resource-Dependent Phases

g WCET = 6.25 s g WCET = 1.27 s

~ 6.0 ~ 6.0

X 5.0 | 11 ! ! 11 X 5.0 | 11 ! ! (I

o |11 l l 11 0 l l (I

B oao(Lg 1| I B 4011 |

o 13l ! ! (. o 11 ! l l

e Oled 1 Phase4 e Ol 0 !

O 2.0 O 2.0

5 L I 5 I B Phase 4

S 1.0 I S Lo b1 1 1

£ 005 : ‘ ‘ £ 0.0 I I ‘ .

c 0.0 1.0 2.0 3.0 4.0 c 0.0 1.0 2.0 3.0 4.0
Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)

Canneal with 10% of LLC and mem BW Canneal with 50% of LLC and mem BW

[Step 1: use changepoint detection to identify phases J

Step 2: compute worst-case instruction rates for each phase ”

WCET Under Dynamic Resource Allocation

p— 5-0
O
o
-
X 4.0 -
9
c 3.0 -
o
c
o 2.0 -
I;
v
2 1.0 -
)
n
c
== 0.0

@ Constant budget (2ca, 26w)
O Constant budget (7.5, 7pw)
. (zcar 2bw) - (7ca: 7bw) - (2car zbw)
!
l, 2 -
‘
{ %
0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

28

WCET Under Dynamic Resource Allocation

— 5-0 LI T T
é : : : : @ Constant budget (2., 2pw)
X 4.0 {11 1 1 O Constantbudget (7eo, 7pu) Phases and
..; (| | | ‘ (2car 2bw) - (7ca: 7bw) - (2car 2bw) Worst_case rates
||] p I)

&‘E 3.0 ; |l!| from multi-
- e phase model
o 2.0,
Y N
- 1
-= 1.0 2
2 11 I
= 0.0 L1 1 1 , |

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°) 29

WCET Under Dynamic Resource Allocation

~ 5.0
S @ Constant budget (2, 2pw)
l)'(' 4.0 | @ Constant budget (7.5, 7pw)
'-; . (an, 2bw) - (7ca: 7bw) - (2car 2bw) Delay between
+ {8
&u 3.0 l resource
< . reconfiguration
.g 2.0 - and rate change
v
E 1.0 - °
o
0
c
= 0.0 — ' ' | |
0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°) 30

WCET Under Dynamic Resource Allocation

~ b5.0 L T '
& : : : : @ Constant budget (2, 2pw)
')'(' 4.0 | 11 | i © Constant budget (7ca, 7pw)
..; (| | | ® (2car 26w) = (7car Tow) = (2car 2pw)

gl 1 | 1
T 3.0 - |!| I I I
ec |l‘ | | i1
c | l | 1
o 207, L y !
.|d I I I 1
5 | (O |
-b 1.0 Bad |
2 1 1 |
— 0.0 11 | | ; —

0.0 1.0 2.0 3.0 4.0

Cumulative Instruction Count (x10°)

WCET Under Dynamic Resource Allocation

— 5-0 LI | L] T |

o : : : : @ Constant budget (2., 25w) / \
-

X 40 111 2 Constant budget (7ca, 7ow) [To get WCET under
9 :!: : : (Zea 2‘;“’) = e, 7"”‘;) > (2ca. dynamic budget:

g 00 gommvotmsip ... * Compose worst-
S L0l 1 1 case rates from

s | b i constant budgets
] | | | A

S 1.0 * Incorportate delay
o ° °

0] L1] [— at reconfiguration
£ 0.0 L1 1 l 1 1

o
o
[
o

- - oints
2.0 3.0 P /

Cumulative Instruction Count (x10°) 32

Research Questions

v

2. Using this model, how do we allocate resources to improve the

e resource efficiency,
e average-case latency,
e and hard real-time schedulability

of DAG applications?

33

Resource Allocation and Scheduling

Suppose we are attimet=7
and need to schedule D and F

deadline G,
= B
l Core 1
deadline G,
A |C
E l Core 0

012345678910 11 12 13
Time (ms)

34

Resource Allocation and Scheduling

{Height of task = proportion ofJ

shared resources allocated

~

A |C

C

|

012345678910 11 12 13

Time (ms)

Core 1

Core 0O

35

Resource Allocation and Scheduling

G Height of task = proportion of
1 G shared resources allocated
B _ >0 |
G E B llw%
Core 1
G,
A [C 40%
H ¢ } /l » Core0

012345678910 11 12 13
Time (ms)

Resource Allocation and Scheduling

Shared resources att =7;

» Core1

A |C

C

v L. Core0

012345678910 11 12 13

Time (ms)

37

Resource Allocation and Scheduling

Highly resource

G1 intensive!
GZ

Shared resources att =7;

» Core1

A |C

C

v L. Core0

012345678910 11 12 13

Time (ms)

38

Resource Allocation and Scheduling

Highly resource

G1 intensive!
GZ

Shared resources att =7;

Deadline miss!

A |C

C

D

» Core1

l » Core0

012345678910 11 12 13
Time (ms)

39

The Case for Co-Design

[Maximizing resource efficiency # maximizing schedulability]

40

The Case for Co-Design

[Maximizing resource efficiency # maximizing schedulability]

[Resource allocation and scheduling must be co-designed.]

41

Talk Outline

3. Rasco: Resource Allocation and Scheduling Co-design

42

Rasco Algorithm Overview

G,

G,
)

Gs

O—O

Input: periodic DAG tasks and the

multi-phase model for each task

43

Rasco Algorithm Overview

G,

G,

Rasco

JORO
Input: periodic DAG tasks and the
multi-phase model for each task

LLC

Mem BW
Core 1 E F D
Core 2 | D D

Output: task schedule with partition of
shared resources at each scheduling point

44

Rasco Pre-Processing: Deadline decomposition

45

Rasco Pre-Processing: Deadline decomposition

A

, C

D

012345678910 11

46

Rasco Pre-Processing: Deadline decomposition

A C D X
012345678910 11

Rasco Pre-Processing: Stack all DAG tasks (G,, G,)

|
.
1)

12

48

Step 1: Start at t = 0, give out remaining resources at t

|
.
1)

49

Step 1: Start at t = 0, give out remaining resources at t

[Maximize resource efficiency at time t]

50

Step 1: Start at t = 0, give out remaining resources at t

v

Reduce the maximum
parallelism at any time

v

to the number of
available cores (m = 2).

v

v

51

Step 2: Schedule m = 2 tasks with smallest deadlines

52

Step 2: Schedule m = 2 tasks with smallest deadlines

53

Step 3: Get next t, repeat

10

11

12

54

Step 3: Get next t, repeat

[Maximize resource efficiency at t J

12

55

Step 3: Get next t, repeat

[Schedule m tasks with earliest deadlines J

12

56

Step 3: Get next t, repeat

10

11

12

57

Step 3: Get next t, repeat

[Maximize resource efficiency at t J

H I
]
£ I F G
5|
A I e D :
0 1 2 3 4) 6 7 8 9 10 11 12
t

58

Step 3: Get next t, repeat

—F

12

59

Step 3: Get next t, repeat

[Maximize resource efficiency at t J

60

Step 4: Finish and squash onto 2 cores

>| T
vy
@)

11

12

61

Step 5: Check if schedulable

m
|

>| T
vy
@)

62

Talk Outline

1.

o g & W b

Introduction/Background

The Resource-Dependent Multi-Phase Model

Rasco: Resource Allocation and Scheduling Co-design
Numerical Evaluation

Prototype Evaluation and Overhead Accounting

Conclusion

63

Numerical Evaluation Setup

e Profiled benchmarks from PARSEC and SPLASH2x
e Used Intel's CAT and MemGuard to partition shared resources
e Constructed multi-phase models using changepoint detection

e Randomly generated 100 tasksets per utilization step [X. Dai. dag-gen-rnd]

e Ran Rasco on each taskset

e Compared schedulability and latency against a state-of-the-art deadline
decomposition method using even partition of resources to cores

o Schedulability test: baseline-test

o Simulated schedule under global EDF: baseline-sim 64

https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd
https://github.com/automaticdai/dag-gen-rnd

Schedulability Results

N\ 8
@ 100 poo-osnonnn -~
) A
¥ 90 ,
B 80 %
= -0 \ Can schedule much
w T)
2l 2 6o ‘.\ heavier workloads on
o| 8 5o s — RASCO m=6 cores v
§ .g 401 -\ baseline-sim
g _Cl:’ 30 3 —+— baseline-test
o 20 See paper for
ua 10/ additional results.
X 0770 20 3.0 40 50 6.0 7.0 8.0

Taskset Utilization

Heavier workload >

Latency Results

[
N
o

"1 —— RASCO
baseline-sim

[
e
o

[
e
o

-
o

8-0 b

7.0

Better results

6-0)

[1.7x speedup v

5.0

Average E2E Latency (s)

4.0

3.0 4.0 5.0 6.0 7.0 8.0
Utilization

o
o
=
o
N
(=]

Heavier workload

Talk Outline

1.

o o A W N

Introduction/Background

The Resource-Dependent Multi-Phase Model

Rasco: Resource Allocation and Scheduling Co-design
Numerical Evaluation

Prototype Evaluation and Overhead Accounting

Conclusion

67

Prototype in LITMUSRT

LLC
Mem BW
Core 1
Core 2
t t L t, ts

Prototype state at t,

=

LITMUSRT 1

o)

I
]
)

e

A 4

Core 0

L1

L2

ﬂk

A 4

Core 1

L1

L2

A

A\ 4

CAT

A\

y

MemGuard

DRAM (main memory)

68

Rasco Prototype Features

LITMUSRT
Rasco Prototype
_
E D 2.
: :
o e 3.
L2 L2
A A
CAT 4.
MemGuard
DRAM (main memory)

. Time-triggered table-driven

scheduling in LITMUSRT

Runtime reconfiguration of CAT +
MemGuard in LITMUSRT

Logic for handling job under-runs

Early releasing and work stealing

69

Overhead-Aware Rasco Extension

Min (us) | Mean (us) | 99" (us) Max (us)
Rasco
Scheduling 0.02 0.03 0.05 18.10
CAT +
MemGuard 1.66 2.53 5.80 23.30

Tasksets out of 2500

1000

800

600 -

400

200

-2

-1

0

[Observed small runtime overheads v J

--- 2% overhead

1
99.6% of tasksets

1

2 3 a

% Utilization Increase

70

Overhead-Aware Rasco Extension

Min (us) | Mean (us) | 99" (us) Max (us)
Rasco
Scheduling 0.02 0.03 0.05 18.10
CAT +
MemGuard 1.66 2.53 5.80 23.30

Tasksets out of 2500

[}
[=]
(=]
(=]

1
99.6% of tasksets

--- 2% overhead

800

600 -

400

200

1 2 3

% Utilization Increase

[99.6% of the tasksets had less than 2% overhead v J

Empirical Evaluation on Prototype

e Ran Rasco’s output schedules on our prototype

% Tasksets Schedulable

0

100 {——==
90
80
70
60
50
40
30
20
10

—e— Theoretical Predictions
Experimental Results

1.0 2.0 3.0 4.0 5.0
Taskset Utilization

72

Empirical Evaluation on Prototype

e Ran Rasco’s output schedules on our prototype

% Tasksets Schedulable

(4]

100_---‘.--..--. =]
90
80
70
60
50
40
30
20
10;

—e— Theoretical Predictions
Experimental Results

[Empirical schedulability always exceeds theoretical guarantee v]

73

Recap

e The move to multicore introduces challenges for timing analysis

e Resource contention — overly-conservative analysis — over-provisioning

fo?.c J balr.c J idk.c

v

4

4

Core 0 Core 1 Core 7

L1
¥

L1 . L1
L% L;l

Last-I Shared Cache
Memory Bus

DRAM (main memory)

Bl Alone

c1.6F B Pollute

§ 141 I PolluteCAT| |
f: 1.2

(/)]

74

Recap

e No prior work had achieved the resource efficiency of fine-grained dynamic

resource allocation while providing hard real-time guarantees

Resource DAG Resource Dynamic Timing
aware? support? control? control? analysis?
Rasco J J J J J

75

Conclusion

e Proposed a resource-dependent multi-phase model which enables worst-
case timing analysis under dynamic resource allocation

e Developed a resource allocation and scheduling co-design algorithm for DAG
applications on multicore that improves
o resource efficiency,
o latency, and
o schedulability

e Implemented a prototype of Rasco to evaluate the safety and utility of our
approach in a real-time operating system

76

Conclusion

e Proposed a resource-dependent multi-phase model which enables worst-
case timing analysis under dynamic resource allocation

e Developed a resource allocation and scheduling co-design algorithm for DAG
applications on multicore that improves
o resource efficiency,
o latency, and
o schedulability

e Implemented a prototype of Rasco to evaluate the safety and utility of our
approach in a real-time operating system

Thank you! https://qgithub.com/abbyeisenklam/Rasco

77

https://github.com/abbyeisenklam/Rasco

	Slide 1: Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore
	Slide 2: The Rise of Data Intensive CPS Tasks
	Slide 3: Data Dependencies in CPS
	Slide 4: Data Dependencies in CPS
	Slide 5: Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines
	Slide 6: Leveraging Multicore Hardware in CPS
	Slide 7: Leveraging Multicore Hardware in CPS
	Slide 8: Challenges on Multicore
	Slide 9: Challenges on Multicore
	Slide 10: Challenges on Multicore
	Slide 11: Resource Contention: State of the Art
	Slide 12: Resource Contention: State of the Art
	Slide 13: Resource Contention: State of the Art
	Slide 14: Resource Contention: State of the Art
	Slide 15: Resource Contention: State of the Art
	Slide 16: Resource Contention: State of the Art
	Slide 17: Rasco: Fine-grain Resource Control with Guarantees
	Slide 18: Research Questions
	Slide 19: Contributions
	Slide 20: Talk Outline
	Slide 21: Task Execution Phases
	Slide 22: Task Execution Phases
	Slide 23: Task Execution Phases
	Slide 24: Task Execution Phases
	Slide 25: A General Model for Resource-Dependent Phases
	Slide 26: A General Model for Resource-Dependent Phases
	Slide 27: A General Model for Resource-Dependent Phases
	Slide 28: WCET Under Dynamic Resource Allocation
	Slide 29: WCET Under Dynamic Resource Allocation
	Slide 30: WCET Under Dynamic Resource Allocation
	Slide 31: WCET Under Dynamic Resource Allocation
	Slide 32: WCET Under Dynamic Resource Allocation
	Slide 33: Research Questions
	Slide 34: Resource Allocation and Scheduling
	Slide 35: Resource Allocation and Scheduling
	Slide 36: Resource Allocation and Scheduling
	Slide 37: Resource Allocation and Scheduling
	Slide 38: Resource Allocation and Scheduling
	Slide 39: Resource Allocation and Scheduling
	Slide 40: The Case for Co-Design
	Slide 41: The Case for Co-Design
	Slide 42: Talk Outline
	Slide 43: Rasco Algorithm Overview
	Slide 44: Rasco Algorithm Overview
	Slide 45: Rasco Pre-Processing: Deadline decomposition
	Slide 46: Rasco Pre-Processing: Deadline decomposition
	Slide 47: Rasco Pre-Processing: Deadline decomposition
	Slide 48: Rasco Pre-Processing: Stack all DAG tasks (G1, G2)
	Slide 49: Step 1: Start at t = 0, give out remaining resources at t
	Slide 50: Step 1: Start at t = 0, give out remaining resources at t
	Slide 51: Step 1: Start at t = 0, give out remaining resources at t
	Slide 52: Step 2: Schedule m = 2 tasks with smallest deadlines
	Slide 53: Step 2: Schedule m = 2 tasks with smallest deadlines
	Slide 54: Step 3: Get next t, repeat
	Slide 55: Step 3: Get next t, repeat
	Slide 56: Step 3: Get next t, repeat
	Slide 57: Step 3: Get next t, repeat
	Slide 58: Step 3: Get next t, repeat
	Slide 59: Step 3: Get next t, repeat
	Slide 60: Step 3: Get next t, repeat
	Slide 61: Step 4: Finish and squash onto 2 cores
	Slide 62: Step 5: Check if schedulable
	Slide 63: Talk Outline
	Slide 64: Numerical Evaluation Setup
	Slide 65: Schedulability Results
	Slide 66: Latency Results
	Slide 67: Talk Outline
	Slide 68: Prototype in LITMUSRT
	Slide 69: Rasco Prototype Features
	Slide 70: Overhead-Aware Rasco Extension
	Slide 71: Overhead-Aware Rasco Extension
	Slide 72: Empirical Evaluation on Prototype
	Slide 73: Empirical Evaluation on Prototype
	Slide 74: Recap
	Slide 75: Recap
	Slide 76: Conclusion
	Slide 77: Conclusion

