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The Rise of Data Intensive CPS Tasks

e Tasks in real-time, embedded, and CPS are increasingly data intensive

e Autonomous control, image processing, signal processing, etc.
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Data Dependencies in CPS

e CPS tasks have data dependencies

e Example: Autoware pipeline
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https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/node-diagram/

Data Dependencies in CPS
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Model: Multiple Periodic DAG Tasks w/ Implicit Deadlines

relative deadline =7 ms
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Leveraging Multicore Hardware in CPS

e Multicores exploit inter- and intra-DAG parallelism

O

O

Lower DAG latency

Higher system throughput
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Leveraging Multicore Hardware in CPS

e Multicores exploit inter- and intra-DAG parallelism

O

O

e Shared resources such as last-level cache and
memory bandwidth are statistically multiplexed

O

Lower DAG latency

Higher system throughput

Good average case performance
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Challenges on Multicore

e Contention for shared resources can
cause interference between tasks
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Challenges on Multicore

Contention for shared resources can
cause interference between tasks

Example: WCET slowdown of PARSEC
benchmarks due to interference
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Challenges on Multicore

e Contention for shared resources can f°°-CJ baf-CJ idk.c
cause interference between tasks H | Scheduler |
e Example: WCET slowdown of PARSEC C°Lr1€ 0 C°Lr1e1 COer ’/
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Potential interference — overly-conservative worst-case timing analysis —
over-provisioning of hardware resources

Image from: M. Xu et al., "Holistic Resource Allocation for Multicore Real-Time Systems," RTAS, 20179.



Resource Contention: State of the Art
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Rasco: Fine-grain Resource Control with Guarantees

Resource | DAG Resource | Dynamic | Timing
aware? support? | control? | control? | analysis?

Rasco [this work] \/ \/ \/ \/ \/

We want the best of both worlds:
v/ Tight worst-case timing analysis via resource isolation

v/ Dynamic allocation of resources based on fine-grain needs

17



Research Questions

1. How do we design a task model that enables dynamic resource allocation
and worst-case timing analysis?

2. Using this model, how do we allocate resources to improve the

e resource efficiency,
e average-case latency,
e and hard real-time schedulability

of DAG applications?

18



Contributions

e To answer RQ1, we propose a resource-dependent multi-phase task model
which enables worst-case timing analysis under dynamic resource allocation

e To answer RQ2, we develop Rasco, a resource allocation and scheduling co-
design algorithm for DAG applications on multicore

e We then implement a prototype of Rasco to evaluate the safety and utility of
our approach in a real-time operating system

19
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Task Execution Phases
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Task Execution Phases

Instruction Rate (x10°9)
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Task Execution Phases

WCET = 1.37 s

WCET = 0.48 s

Instruction Rate (x10°9)
Instruction Rate (x10°9)

FFT with 10% of LLC and memory B with 50% of LLC and memory BW

Middle phase is highly resource intensive
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Task Execution Phases

g WCET = 1.37 s g WCET = 0.48 s
= 8.0 - 8.0
X X
¢ ° ° m
© e © 1 oL e’
€ 40/ f & C 40 ; ‘N@ ; |
M T
- | o ©° o0 .:n .\.o\ S J H
‘HJ 2.0 =® ...".‘. ¥ o ®e ‘HJ 2.0 u
- o en o 3
o W o
£ 0.0 - - : : : £ 0.0 - : ; ‘ ‘
c 0.0 0.5 1.0 1.5 2.0 c 0.0 0.5 1.0 1.5 2.0
Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)

FFT with 10% of LLC and memory BW FFT with 50% of LLC and memory BW

» Phases vary in resource intensity 24

[- Tasks have different execution phases ]




A General Model for Resource-Dependent Phases
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A General Model for Resource-Dependent Phases
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[Need a resource-dependent task model that is generalizable,}

but still tight.
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A General Model for Resource-Dependent Phases
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WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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WCET Under Dynamic Resource Allocation
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Research Questions

v

2. Using this model, how do we allocate resources to improve the

e resource efficiency,
e average-case latency,
e and hard real-time schedulability

of DAG applications?

33



Resource Allocation and Scheduling

Suppose we are attimet=7
and need to schedule D and F

deadline G,
= B
l Core 1
deadline G,
A |C
E l Core 0

012345678910 11 12 13
Time (ms)
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Resource Allocation and Scheduling

{Height of task = proportion ofJ

shared resources allocated

~

A |C

C

|

012345678910 11 12 13

Time (ms)

Core 1

Core 0O

35



Resource Allocation and Scheduling

G Height of task = proportion of
1 G shared resources allocated
B _ >0 |
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Resource Allocation and Scheduling

Shared resources att =7;
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Resource Allocation and Scheduling

Highly resource

G1 intensive!
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Resource Allocation and Scheduling

Highly resource

G1 intensive!
GZ

Shared resources att =7;

Deadline miss!
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The Case for Co-Design

[ Maximizing resource efficiency # maximizing schedulability ]
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The Case for Co-Design

[ Maximizing resource efficiency # maximizing schedulability ]

[ Resource allocation and scheduling must be co-designed. ]
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Talk Outline

3. Rasco: Resource Allocation and Scheduling Co-design
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Rasco Algorithm Overview

G,

G,
)

Gs

O—O

Input: periodic DAG tasks and the

multi-phase model for each task

43



Rasco Algorithm Overview

G,

G,

Rasco

JORO
Input: periodic DAG tasks and the
multi-phase model for each task
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Core 1 E F D
Core 2 | D D

Output: task schedule with partition of
shared resources at each scheduling point
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Rasco Pre-Processing: Deadline decomposition
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Rasco Pre-Processing: Deadline decomposition

A
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Rasco Pre-Processing: Deadline decomposition
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Rasco Pre-Processing: Stack all DAG tasks (G,, G,)

|
.
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12
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Step 1: Start at t = 0, give out remaining resources at t

|
.
1)
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Step 1: Start at t = 0, give out remaining resources at t

[ Maximize resource efficiency at time t ]
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Step 1: Start at t = 0, give out remaining resources at t

v

Reduce the maximum
parallelism at any time

v

to the number of
available cores (m = 2).

v

v
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Step 2: Schedule m = 2 tasks with smallest deadlines

52



Step 2: Schedule m = 2 tasks with smallest deadlines
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Step 3: Get next t, repeat

10

11

12
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Step 3: Get next t, repeat

[ Maximize resource efficiency at t J

12
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Step 3: Get next t, repeat

[ Schedule m tasks with earliest deadlines J

12
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Step 3: Get next t, repeat
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Step 3: Get next t, repeat

[ Maximize resource efficiency at t J

H I
]
£ I F G
5|
A I e D :
0 1 2 3 4 ) 6 7 8 9 10 11 12
t

58



Step 3: Get next t, repeat

—F
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Step 3: Get next t, repeat

[ Maximize resource efficiency at t J
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Step 4: Finish and squash onto 2 cores

>| T
vy
@)

11

12

61



Step 5: Check if schedulable

m
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Numerical Evaluation Setup

e Profiled benchmarks from PARSEC and SPLASH2x
e Used Intel's CAT and MemGuard to partition shared resources
e Constructed multi-phase models using changepoint detection

e Randomly generated 100 tasksets per utilization step [X. Dai. dag-gen-rnd]

e Ran Rasco on each taskset

e Compared schedulability and latency against a state-of-the-art deadline
decomposition method using even partition of resources to cores

o Schedulability test: baseline-test

o Simulated schedule under global EDF: baseline-sim 64


https://github.com/automaticdai/dag-gen-rnd
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Schedulability Results
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Latency Results
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Prototype in LITMUSRT
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Rasco Prototype Features

LITMUSRT
Rasco Prototype
_
E D 2.
: :
o e 3.
L2 L2
A A
CAT 4.
MemGuard
DRAM (main memory)

. Time-triggered table-driven

scheduling in LITMUSRT

Runtime reconfiguration of CAT +
MemGuard in LITMUSRT

Logic for handling job under-runs

Early releasing and work stealing
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Overhead-Aware Rasco Extension

Min (us) | Mean (us) | 99" (us) Max (us)
Rasco
Scheduling 0.02 0.03 0.05 18.10
CAT +
MemGuard 1.66 2.53 5.80 23.30

# Tasksets out of 2500

1000

800

600 -

400

200

-2

-1

0

[ Observed small runtime overheads v J

--- 2% overhead

1
99.6% of tasksets

1

2 3 a

% Utilization Increase
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Overhead-Aware Rasco Extension

Min (us) | Mean (us) | 99" (us) Max (us)
Rasco
Scheduling 0.02 0.03 0.05 18.10
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800

600 -

400

200

1 2 3

% Utilization Increase

[ 99.6% of the tasksets had less than 2% overhead v J




Empirical Evaluation on Prototype

e Ran Rasco’s output schedules on our prototype

% Tasksets Schedulable

0

100 {——==
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50
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—e— Theoretical Predictions
Experimental Results

1.0 2.0 3.0 4.0 5.0
Taskset Utilization
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Empirical Evaluation on Prototype

e Ran Rasco’s output schedules on our prototype

% Tasksets Schedulable

(4]

100_---‘.--..--. =]
90
80
70
60
50
40
30
20
10;

—e— Theoretical Predictions
Experimental Results

[ Empirical schedulability always exceeds theoretical guarantee v ]
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Recap

e The move to multicore introduces challenges for timing analysis

e Resource contention — overly-conservative analysis — over-provisioning
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Recap

e No prior work had achieved the resource efficiency of fine-grained dynamic

resource allocation while providing hard real-time guarantees

Resource DAG Resource Dynamic Timing
aware? support? control? control? analysis?
Rasco J J J J J
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Conclusion

e Proposed a resource-dependent multi-phase model which enables worst-
case timing analysis under dynamic resource allocation

e Developed a resource allocation and scheduling co-design algorithm for DAG
applications on multicore that improves
o resource efficiency,
o latency, and
o schedulability

e Implemented a prototype of Rasco to evaluate the safety and utility of our
approach in a real-time operating system
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Conclusion

e Proposed a resource-dependent multi-phase model which enables worst-
case timing analysis under dynamic resource allocation

e Developed a resource allocation and scheduling co-design algorithm for DAG
applications on multicore that improves
o resource efficiency,
o latency, and
o schedulability

e Implemented a prototype of Rasco to evaluate the safety and utility of our
approach in a real-time operating system

Thank you! https://qgithub.com/abbyeisenklam/Rasco
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